Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

История

.docx
Скачиваний:
9
Добавлен:
08.06.2015
Размер:
56.85 Кб
Скачать

11.

Современная шкала Цельсия была предложена шведским ботаником Андерсом Цельсием в 1742 году.

Однако за 0 градусов он принимал точку кипения воды, а за 100 градусов — точку таяния льда, как и Далиль. Такая шкала не завоевала популярности и очень скоро была перевернута обратно.

Сама по себе градуировка термометров доставляла не меньше хлопот, чем конструкция термометров. И это связано с вопросом о том, происходит ли расширение используемых в термометрах жидкостей (воды, спирта, ртути) или газа пропорционально увеличению температуры во всех интервалах интересующих температур. Таким образом, задача усовершенствования термометров явилась толчком для изучения явления расширения тел при нагревании. Однако все эти исследования не разделяли понятия "теплота" и "температура". И температура тела так же, как и теплота связывалась с представлением о теплороде. В "Словаре церковнославянского и русского языка", изданном в середине XIX века, можно прочитать: "Температура есть мера сгущения теплорода, показываемая в градусах термометром". "Теплород - вещественная причина жара, тепла и холода, непостижимо тонкая жидкость, изливающаяся из Солнца и проникающая во все тела физического мира, невидимая, невесомая и только ощущением ощущаемая".

Итак, температуру и теплоту связывали с особым видом невесомой матери — теплородом. Именно присутствие теплорода в теле вызывает нагретость тела. Единица измерения теплоты, дожившая до наших дней, "калория" в переводе на русский язык означает не что иное, как "теплород". Однако так думали не все. В истории развития взглядов на природу теплоты ясно прослеживаются два направления: одно из них связано с представлением о теплороде, а второе связывает сущность тепловых явлений с движением атомов, из которых состоят тела. Это так называемые теплородная и кинетическая теории теплоты. В отношении теплородной теории также существовали две точки зрения. Первая точка зрения — традиционная, согласно которой теплород — "некая жидкость, крайне мелкие частицы которой наделены силой взаимного оттаивания". В этом случае большее или меньшее скопление этой жидкости в телах определяет их состояние". Вторая точка зрения являлась менее популярной, но в ней как бы делалась попытка синтеза кинетической теории с теорией теплорода.

Кинетической теории теплоты придерживались многие ученые. Среди них — Фрэнсис Бэкон, Рене Декарт, Даниил Бернулли, М. Ломоносов, Л. Эйлер. Однако господствующей на протяжении столетий являлась теплородная теория. Причина этого кроется в том, что вплоть до изготовления паровых машин и их усовершенствования ученые не интересовались вопросом о путях превращения теплоты в механическую работу. Обратные процессы превращения работы в теплоту были известны с незапамятных времен, но они, как казалось, хорошо объяснялись теплородной теорией (вплоть до опытов Румфорда).

Спор между сторонниками теплородной и кинетической теории состоял в следующем: сводится ли представление о теплоте к некоторой субстанции, пусть даже и невесомой, или же теплота есть проявление кинетического движения молекул? А. Эйнштейн и Л. Инфельд отмечают: "В истории физики часто встречаются такие испытания, которые способны произвести приговор о жизни или смерти теории: они называются crucis (круцис, то есть решающими) экспериментами. Решением суда такого эксперимента может быть оправдана только одна теория явлений... Такой решающий эксперимент был произведен Румфордом; он нанес смертельный удар субстанциональной теории теплоты". Надо сказать, что этот эксперимент мог быть поставлен только благодаря и вследствие развития калориметрических исследований — исследований по изучению явлений теплообмена между двумя веществами (однородными с различными температурами, разнородными с различными температурами, в разных фазах и т. д.) при смешивании их в теплоизолированном сосуде — калориметре. В процессе этих опытов, где основная заслуга принадлежит петербургскому академику Георгу Рихману, было установлено, что при смешении жидкостей, даже однородных, устанавливается определенная одинаковая для всей смеси температура. Дальнейшие исследования сконцентрировались в выяснении вопроса, "как распределяется теплота между различными телами". Было установлено, что различные тела имеют различные удельные теплоемкости. Под удельной теплоемкостью вещества понимается количество теплоты (пока еще теплорода) для увеличения температуры единицы массы вещества на один градус. В процессе калориметрических исследований было сделано важное заключение: при исследовании тепловых явлений следует различать такие понятия, как температура и теплота. Так, при превращении, например, льда в воду, теплота расходуется, а температура при этом не изменяется (лед, как и прочие тела, плавится при строго определенной температуре). Вместе с понятием количества теплоты были установлены понятия удельной теплоемкости, теплоемкости, теплоты плавления, теплоты парообразования.

Так, в чем же состоит суть решающего эксперимента, проведенного графом Румфордом? Граф Румфорд (Бенджамин Томсон) ссылался на опыты по выделению теплоты при трении. Это явление хорошо известно с древнейших времен. Оно явилось одной из важнейших предпосылок возникновения человеческой цивилизации. Ибо благодаря трению первобытный человек добывал себе огонь. Тепло-родная теория объясняла выделение теплоты при трении тел друг о друга тем, что при трении тела как бы выжимают из себя теплород, вследствие чего количества теплорода в них, то есть теплоемкость, должны изменяться. Самая известная работа Румфорда "Исследование источника тепла, вызываемого трением" была представлена в Королевское общество в Лондоне в 1798 году. К слову сказать, Румфорд известен как активный политический деятель, выдающийся организатор, внесший значительный вклад в реорганизацию армии. При этом он сохранял постоянный активный интерес к науке и технике. Талантливый экспериментатор, он большое внимание уделял практическим применениям научных знаний. В вышеназванной работе Румфорд привел результаты эксперимента, связанного со сверлением пушечного ствола. В течение 2,5 часов за счет трения было получено количество теплоты, достаточной для превращения в пар 12 килограммов воды при получении всего лишь 270 граммов металлической стружки. Далее было обнаружено, что стружка имеет такую же удельную теплоемкость, как исходный металл отливки. Вследствие полученных результатов Румфорд сделал вывод о том, что теплота не могла быть получена за счет "выжимания" теплорода из металла. "Обсуждая этот предмет, — пишет Румфорд, — мы не должны забывать учета того самого замечательного обстоятельства, что источник теплоты, порожденный трением, оказался в этих экспериментах явно неисчерпаемым.

Совершенно необходимо добавить, что это нечто, которое любое изолированное тело или система тел может непрерывно поставлять без ограничения, не может быть материальной субстанцией; и мне кажется чрезвычайно трудным, если не совершенно невозможным, создать какую-либо точную идею о чем-то, что в состоянии возбуждаться и передаваться, подобно тому как возбуждается и передается в этих экспериментах теплота, если только не допустить, что это что-то есть движение".

Опыты Румфорда были подтверждены также работами Хэмфри Дэви, показавшими, что трение двух кусков льда друг о друга может вызвать их таяние. Румфорд, выражая свое непримиримое отношение к теплородной теории, как-то сказал: "Я удовлетворен тем, что доживу до того, что буду иметь удовольствие увидеть теплород, похороненный вместе с флогистоном в одном гробу". Напомним, что флогистоном называли газ, который считали основой огня. Флогистону приписывалась такая же роль в объяснении химических реакций, как теплороду в объяснении тепловых явлений. Опровергателем теории флогистона выступил Антуан Лавуазье, который, однако, спас "теплород", считал его полноправным элементом в своей таблице химических простых тел.

Рассмотрение процессов превращения работы трения в тепло создало все необходимые предпосылки для отрицания теплородной теории. Тем не менее, этого отрицания не произошло. Теплородная теория просуществовала еще значительно долго, несмотря на опыты Румфорда. Для выработки закона сохранения и превращения энергии не менее важными явились исследования обратных процессов по превращению теплоты в работу, то есть по исследованию функционирования тепловых машин.

Принято считать, что первая паровая машина была изобретена греческим ученым и математиком Героном.

Это так называемая эолипил (греч. — ветряной шар) Герона. Герон пытался использовать движущую "силу" тепла для облегчения труда. Однако открытие Герона не получило практического применения. Хорошо известно, с каким предубеждением относились греки к подобного рода изобретениям, которые ими рассматривались как попытки обмана истинной природы и считались недостойными.

По существу, развитие тепловых машин связано с изготовлением орудий войны — ракет и пушек. К сожалению, в истории эволюции человеческого общества немало страниц, свидетельствующих о том, что возникновение новых машин, механизмов, технологий предопределялось военными интересами, и лишь позже они получали применение для облегчения мускульного мануфактурного труда человека (лат. — manu — рукой, factus — сделано). Другой важной причиной возникновения и практического применения паровых машин послужила необходимость добычи топлива — каменного угля из шахт, находящихся под водными пластами. Нужно было откачивать воду из шахт. И так получилось, что деятельность первых конструкторов тепловых устройств была связана с добычей топлива. Первый паровой насос, служащий для откачки воды из шахт, был сконструирован владельцем одной из шахт в Англии, Томасом Сэйри в конце XVII века. Паровой насос Сэвери в усовершенствованных видах использовался вплоть до середины XVIII века. Более совершенную паровую машину построил англичанин Томас Ньюкомен, работавший вместе с Сэвери. Машина Ньюкомена уже имела основные детали современной паровой машины — цилиндр и поршень. Главное новшество состояло в том, что в машине Ньюкомена пар давил не непосредственно на поверхность воды, а на поршень в цилиндре. Известно, что Ньюкомен состоял в переписке с выдающимся физиком Робертом Гуком, и эта идея, возможно, была подсказана Гуком.

Главный недостаток первых паровых машин состоял в том, что, во-первых, они потребляли много топлива, во-вторых, это не были машины непрерывного действия. Действительная эпоха паровых машин начинается с машины Уатта, как это и преподносится практически во всех учебниках истории. Машина Уатта изобретена в 1763 году шотландским механиком Джеймсом Уаттом. Основная идея Уатта заключалась в уменьшении потерь тепла в машине за счет попеременного нагревания и охлаждения цилиндра. В том же 1763 году русским изобретателем И. Молзуновым, работавшим механиком на алтайских горнорудных и металлургических заводах, была изобретена первая паровая машина непрерывного действия.

Широкое применение паровых машин в XVIII-XIX веках послужило также толчком для создания самодвижущихся устройств

12.

В начале XVIII в. задача создания универсального двигателя еще не созрела, но мысль о таком двигателе уже проявлялась в ряде конкретных предложений. Наиболее рациональное из них представлялось тогда в объединении положительных особенностей водяного колеса и паровой машины.

В таких комбинированных теплогидравлических установках паровой насос подавал воду на водяное колесо, которое могло быть использовано для непрерывной отдачи работы в форме вращательного движения. Водяное колесо играло роль передаточного механизма. Подобные установки были запатентованы еще в начале XVIII в., но преимущественное распространение получили в середине и в конце столетия и действовали даже в начале XIX в., когда нужда в универсальном двигателе проявилась особенно остро [9, с. 21].

Известно, что в 1742 г. чугунолитейная фирма «Дерби», сыгравшая в свое время заметную роль в техническом прогрессе Англии, установила двигатель Ньюкомена для подачи воды на 10 водяных колес. Подобное же устройство применялось в гончарнях в 50-60-х годах. Во второй половине XVIII столетия этим способом поднимали уголь: паровой двигатель откачивал воду из шахты, а вода вращала колесо, приводившее в движение углеподъемник. В процессе использования водяного колеса оно заметно совершенствовалось. Неуклонное повышение мощности рабочих машин требовало тщательного сравнительного анализа влияния всех факторов на устройство и мощность приводов. Наступил момент, когда одних эмпирических способов оказалось недостаточно.

В разработку новых методов конструирования водяного колеса заметный вклад сделал Джон Смитон, один из выдающихся инженеров своего времени. В 1752-1753 гг. он создал лабораторные модели водяных колес и, исследовав зависимость их мощности от формы и пропорций деталей, сильно изменил конструкцию и добился значительного повышения коэффициента полезного действия. К концу столетия простое водяное колесо прошло весь путь своего развития. Само собою разумеется, что оно находило преимущественное применение в гидросиловых, а не в комбинированных теплогидравлических установках, которые возникали спорадически и в целом не решали задачи удовлетворительно, имели низкий КПД и были громоздкими.

Идею создания теплового двигателя, свободного от гидравлического колеса, со всею определенностью высказал и осуществил в своем проекте «огнедействующей машины» русский механик Иван Иванович Ползунов [10]. Он получил техническое образование в горнозаводской школе в Екатеринбурге (ныне Свердловск), а затем прошел практику на заводах Урала и Алтая, занимаясь в свободное время физикой и механикой. Есть основания предполагать, что, работая в Барнауле, Ползунов ознакомился с наиболее фундаментальными для того времени сочинениями Леупольда и Белидора по прикладной механике, а также с книгой «Наставление по рудному делу» И. А. Шлаттера, президента Берг-коллегии, в которой описывались водоподъемные паровые машины

В 1763 г. Ползунов, будучи тогда шихтмейстером Колывано-Воскре-сенских заводов, представил расчеты и детальный проект парового двигателя (мощностью 1,8 л. с.), в котором предлагал «сложением огненной машины водяное руководство пресечь» и создать двигатель, который мог бы «по воле нашей, что будет потребно, исправлять» [11, с. 119].

Машина Ползунова отличалась от известных в его время паровых двигателей прежде всего тем, что предназначалась не исключительно для подъема воды, а для привода заводских машин - воздуходувных мехов, и кроме того, в отличие от ньюкоменовского насоса, в котором рабочий ход сменялся холостым, представляла собой машину непрерывного действия. Непрерывность передачи работы достигалась применением двух цилиндров вместо одного: поршни цилиндров двигались навстречу один другому и действовали поочередно на общий вал, т. е. Ползунов предложил и осуществил метод суммирования, нашедший позднее самое широкое распространение в тепловых поршневых двигателях.

Как известно, принцип суммирования работы нескольких цилиндров на одном валу применяют в современных многоцилиндровых двигателях. О возможности использования двух цилиндров до Ползунова упоминалось лишь в сочинении Леупольда, вышедшем в свет в Лейпциге в 1724 г., но эта идея не была осуществлена автором [12].

По проекту Ползунова пар из котла подавался в один из двух цилиндров и поднимал поршень до крайнего верхнего положения, после чего из резервуара в цилиндр впрыскивалась холодная вода, что приводило к конденсации пара. Под давлением атмосферы на поршень он опускался, в то время как в другом цилиндре в результате давления пара поршень поднимался. С помощью специального устройства осуществлялись автоматический впуск пара из котла в цилиндры и автоматическое поступление холодной воды. Система шкивов передавала движение от поршней насосам, нагнетавшим воду в резервуар, и воздуходувным мехам.

Исследователи творчества Ползунова отмечают, что его докладная записка с изложением проекта бтличалась чрезвычайной ясностью мысли и точностью проведенных расчетов силы давления пара. В записке было указано, что необходимо на опыте подтвердить некоторые величины сопротивлений, которые не могли быть тогда определены расчетом [4, с. 43]. Проект Ползунова был передан на отзыв президенту Берг-коллегии И. А. Шлаттеру, который отметил оригинальность его замысла. Однако он не оценил главного преимущества предложения Ползунова - об устранении водяного колеса, игравшего в традиционных западноевропейских установках роль передаточного звена. Шлаттер рекомендовал возврат к старым схемам: комбинации парового котла с водяными колесами.

Ползунов, не приняв этого замечания Шлаттера, сконструировал новую установку в 32 л. с. - самую мощную в то время для централизованного воздухоснабжения группы плавильных печей Барнаульского завода. Двигатель приводил в действие громадные меха.

Интересны и оригинальны были разработанные Ползуно-вым новые детали и устройства, в том числе сконструированный им регулятор прямого действия для поддержания постоянного уровня воды в котле.

В 1764 г. по решению Канцелярии Колывано-Воскресенских заводов Ползунов с помощью учеников приступил к постройке своей огнедействую-щей машины, и весной 1766 г. она была почти закончена, несмотря на ограниченность отпущенных средств. Но дожить до пуска машины Ползунову не удалось: в мае 1766 г. он умер от скоротечной чахотки. Уже тяжело больной в апреле 1766 г. Ползунов писал в Петербург о готовности двигателя и просил дальнейшие работы над его установкой поручить лучшим мастерам Д. Левзину и И. Черницыну. Испытания и работа по устранению недостатков начались неделю спустя после кончины Ползунова. Обнаружились дефекты двигателя, явившиеся следствием недостаточно высокого уровня машиностроительного производства на Барнаульском заводе: неточная обработка поверхностей цилиндров, наличие в металлических деталях раковин, неплотность воздуходувных мехов и т. п. Сказалось также отсутствие сведений о теплоте конденсации, без которых невозможно было рассчитать необходимое количество охлаждающей воды.

В июне 1766 г. была успешно испытана установка с мехами, после чего началось строительство печей. В августе того же года установка была пущена в действие. Но в ноябре 1766 г. была обнаружена течь в котле (Ползунов считал этот котел пригодным лишь для пробного пуска), и машину остановили. Был заказан новый котел, но руководители канцелярии все еще сомневались в работоспособности установки и особенно в том, под силу ли постройка мощных паросиловых агрегатов Барнаульскому заводу. Установку забросили, несмотря на благоприятные показатели ее работы в течение 43 дней (была получена прибыль 12 418 р. при использовании всего трех печей), и в 1780 г. совсем разобрали. Модель двигателя, переданная после смерти Ползунова Академии наук, исчезла.

Привод заводских агрегатов от тепловых двигателей без помощи водяных колес, предложенный Ползуновым, был совершеннейшей новинкой. Но лишь немногие знавшие о его замыслах поняли важность изобретения русского механика. В 1765 г. посетивший Барнаульский завод русский естествоиспытатель Э. Г. Лаксман, писал, что Ползунов «муж, делающий честь своему отечеству... Он строит теперь огневую машину, совсем отличную от венгерской и английской. Машина сия будет приводить в действие мехи или цилиндры в плавильнях посредством огня» [13, с. 108].

Ползунов, правда, не решил технической задачи привода машин и механизмов, требовавших вращательного движения, ибо в его время и в его условиях более 90% всего заводского оборудования (мехи, песты, молоты, дробилки и т. п.) работало на принципе возвратно-поступательного движения и не было настоятельной необходимости превращать прямолинейное движение в круговое [9, с. 25].

На судьбе изобретения И. И. Ползунова со всей очевидностью сказались условия феодально-крепостнической России, еще не готовой для перехода к крупному машинному производству.

Паровая машина двойного действия Дж. Уатта

Бурное развитие основных видов промышленности в Англии в первой половине XVIII в. и массовое внедрение в производство рабочих машин, ознаменовавшее собой начало промышленной революции, сделало необходимой революцию в паровой машине. Эта революция означала переход от двигателя частного назначения к универсальному двигателю - основе энергетической базы крупной фабричной промышленности.

Нужда в двигателе, способном приводить в действие любые рабочие машины, особенно остро сказывавшаяся в 1760-1780 гг., ярко выразилась в словах английского предпринимателя Меттью Болтона: «В Лондоне, Манчестере, Бирмингеме люди сходят с ума по паровой мельнице». Требовалась такая «мельница», которая бы передавала работу не только непрерывно, но в форме вращательного однонаправленного равномерного движения и была достаточно экономичной [5, с. 39].

Универсальный паровой двигатель, пригодный для практической эксплуатации, был создан шотландским изобретателем Джеймсом Уаттом. Уатт, еще в детстве мастеривший модели машин, выбрал профессию механика. Пройдя курс обучения в Глазго и Лондоне, он с 1757 г. стал работать в качестве механика в университете в Глазго и тогда же открыл мастерскую для изготовления и ремонта математических и физических приборов. Уатт близко познакомился со многими учеными, в том числе с физиком Джозефом Влеком, изучавшим скрытую теплоту испарения водяного пара, и Джоном Робисоном - тогда еще студентом, а впоследствии профессором физики. Робисон посоветовал Уатту изучить имевшуюся в то время литературу по механике паровых машин: сочинения Деза-гюлье, Леупольда и Белидора. Уатт проводит опыты над свойствами водяного пара и определяет зависимость температуры насыщенного пара от давления. Построенные им кривые близко совпадают с современными данными. Непосредственно работу над паровыми машинами Уатт начал в 1763 г. с починки модели действующей паронасосной установки Ньюко-мена. Однако модель была почти неработоспособной, так как будучи геометрически подобной своему промышленному образцу, она отличалась от него протекающими в ней механическими и тепловыми процессами [14, с. 154; 15]. Установка требовала большего непроизводительного расхода пара, а следовательно, и топлива. После пяти лет упорной работы над моделью Уатт сделал громадный шаг в деле совершенствования паровых двигателей и повышения их экономичности. Первоначально он пришел к выводу, что хорошая работа пароатмосферной машины зависит от выполнения двух условий: во-первых, получения сильного разрежения под поршнем за счет более полной конденсации пара (для этого нужно было как можно больше охладить цилиндр); во-вторых, поддержания цилиндра в горячем состоянии, чтобы избежать непроизводительных потерь пара при выпуске его из парового котла. Выполнение этих условий одновременно в одном цилиндре технически невозможно, и Уатт дал новое решение: заключить цилиндр в паро-ВУЮ рубашку, поддерживая его постоянно в нагретом состоянии, а конденсацию пара осуществлять в отдельном конденсаторе, снабженном насосом для откачивания конденсата и воздуха. В 1765 г. была построена модель нового двигателя, но только в 1769 г. удалось добиться его работы по полному циклу [2, с. 129].

Во время своих экспериментальных работ над моделью Уатт получил денежную поддержку владельца Карронского завода Ребека и вместе с ним подал заявление о выдаче патента на «способы уменьшения потреблений пара и вследствие этого - топлива в огневых машинах». Кроме указанных принципиальных нововведений'в двигателе, Уатт запатентовал также применение избыточного давления пара с выхлопом в атмосферу - в случаях недостатка воды для конденсации пара; применение «коловратных» машин с однонаправленно вращающимся поршнем; наконец, работу J неполной конденсацией, т. е. с ухудшенным вакуумом. В последнем пункте патента предусматривалась также конструкция уплотнения поршня.

Усовершенствования Уатта содержали реальную возможность снизить расход пара и топлива более чем в два раза - это был огромный успех на пути создания экономичного теплового двигателя.

Однако первая попытка в 1769 г. построить насосную паровую установку с отдельным конденсатором на Карронском заводе успеха не имела - не удалось обеспечить достаточной точности обработки и плотности соединений. Изготовление таких крупных машин стоило больших средств, которыми Уатт не располагал, а Джон Ребек к тому времени обанкротился.

В поисках финансовых возможностей для постройки двигателей Уатт стал думать о работе за пределами Англии. В начале 70-х годов русское правительство предложило английскому инженеру «занятие, сообразное с его вкусом и познаниями» с ежегодным жалованием 1000 ф. ст. Однако поездка в Россию не состоялась. В 1772 г. Уатт заключил контракт с М. Болтоном, владельцем машиностроительного предприятия в г. Сохо близ Бирмингема [5, с. 146].

Договор между Уаттом и Болтоном стал весьма действенным. Болтон оказался умным и дальновидным человеком и не поскупился на расходы по созданию новых машин. Уатт до конца своей жизни оставался главным механиком завода.

Первая машина с отдельным конденсатором была создана в 1774 г. Интересной представляется конструкция 1777 г., получившая название «Вельзевул», в которой Уатт применил отсечку и расширение пара с целью увеличения экономичности [4, с. 55-57].

К 1780 г. получил распространение тип машин Уатта простого действия, служивших для откачивания воды. Самым надежным потребителем двигателя стали рудники Корнуэлла: в 1778 г. в этом графстве на-тывалось свыше 70 установок Ньюкомена, а в 1790 г. все они, кроме одной, были заменены машинами Болтона-Уатта. Большое их число изго-овлялось также для медных рудников в Корнваллисе [2, с. 130]

Успех новых двигателей объяснялся тем, что их применение значительно удешевило получение механической энергии.

Но к тому времени, когда начался массовый выпуск паровых машин для насосов, выявился большой спрос на более совершенные двигатели текстильной, металлообрабатывающей и других отраслей промышленности. А паровая машина Уатта все еще не была пригодна для привода рабочих машин с вращательным движением.

В 1778 г. Уатт по предложению своего компаньона Болтона приступил к усовершенствованию парового двигателя. Он детально исследовал процесс расширения пара в цилиндре, сконструировав для этой цели специальный индекатор - прибор, замеряющий давление пара в процессе расширения. Определив практически выгодную степень расширения пара для превращения тепла в работу. Уатт предложил в 1782 г. паровой двигатель с расширением и получил на него английский патент. Придя к мысли использовать вторую половину цилиндра, он создал так называемый двигатель двойного действия, в котором был существенно снижен удельный расход пара [16, c. 56].

Вот как описывал свое изобретение 1782 г. сам Уатт: «Мое второе улучшение паровых, или огневых, машин состоит в использовании упругой силы пара для того, чтобы двигать поршень вверх, а также прижимать его вниз попеременно, создавая вакуум над или под поршнем и одновременно используя действие пара на поршень в том конце или части цилиндра, из которой не происходит выхлопа пара; машина, сконструированная таким образом, может дать двойное количество работы или развить двойную мощность в одно и то же время (с цилиндром равных размеров) по сравнению с машиной, в которой активная сила пара действует на поршень только в одном направлении - либо вверх, либо вниз» [5, с. 157].