Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

vse-bilearivkty_001

.pdf
Скачиваний:
17
Добавлен:
08.06.2015
Размер:
2.63 Mб
Скачать

49.Алгоритмы обработки массивов,

После объявления массива для его хранения отводится определенное место в памяти. Однако, чтобы начать работу с массивом, необходимо его предварительно заполнить, т. е. присвоить элементам массива определенные значения. Заполнение массива производится различными способами.

Первый способ состоит в том, что значения элементов массива вводятся пользователем с помощью функции ввода InputBox. Например, заполнить строковый массив stг А (I) буквами русского алфавита можно с помощью следующей программы (событийной процедуры) на языке

Visual Basic:

После запуска программы на выполнение и щелчка по кнопке Commandl следует помещать на последовательно появляющихся панелях ввода в текстовом поле буквы алфавита.

Второй способ заполнения массива заключается в применении оператора присваивания. Заполним числовой массив bytA (I) целыми случайными числами в интервале от 1 до 100, используя функцию случайных чисел Rnd и функцию выделения целой части числа Int в цикле со счетчиком:

Составим программу поиска индекса элемента массива, значение которого совпадает с заданным. Возьмем символьный массив, содержащий алфавит, и определим номер заданной буквы по порядку алфавита. В первом цикле программы произведем заполнение строкового массива буквами русского алфавита.Затем введем искомую букву и во втором цикле сравним ее со всеми элементами массива. В случае совпадения присвоим переменной N значение индекса , данного элемента. Выведем результат на печать.

50. Приближенные методы решения нелинейных уравнений, метод деления отрезка пополам.

Метод касательных. При решении нелинейного уравнения методом касательных задаются начальное значение аргумента x0 и точность ε. Затем в точке(x0,F(x0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x1. В точке (x1,F(x1)) снова строим касательную, находим следующее приближение искомого решения x2и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс

воспользуемся следующей формулой (получите формулу самостоятельно). Условие сходимости метода касательных F(x0)∙F''(x0)>0. Структограмма решения нелинейных уравнений методом касательных показана на рис.

Пока |F(x)|> ε

Рис. Структограмма для

 

 

метода касательных

51. Приближенные методы решения нелинейных уравнений, метод хорд.

Метод касательных. При решении нелинейного уравнения методом касательных задаются начальное значение аргумента x0 и точность ε. Затем в точке(x0,F(x0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x1. В точке (x1,F(x1)) снова строим касательную, находим следующее приближение искомого решения x2и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей

формулой (получите формулу самостоятельно). Условие сходимости метода касательных F(x0)∙F''(x0)>0. Структограмма решения нелинейных уравнений методом касательных показана на рис.

Пока |F(x)|> ε

52. Приближенные методы решения нелинейных уравнений, метод касательных.

Метод хорд. При решении нелинейного уравнения методом хорд задаются интервал [a,b], на котором существует только одно решение, и точность ε. Затем через две точки с координатами (a,F(a)) и (b,F(b)) проводим отрезок прямой линии (хорду) и определяем точку пересечения этой линии с осью абсцисс (точка c). Если при этом F(a)∙F(c)<0, то правую границу интервала переносим в точку с (b=c). Если указанное условие не выполняется, то в

точку c переносится левая граница интервала (а=с). Поиск решения прекращается при достижении заданной точности |F(c)|< ε. Для определения точки пересечения хорды с осью

абсцисс воспользуемся следующей формулой (попытайтесь получить формулу самостоятельно).Структограмма метода хорд показана на рисунке.

Пока |F(c)|>ε

F(a)∙F(c)<0

да

нет

b=c

a=c

1.Рис. Структограмма для метода хорд

53.Приближенные методы решения систем уравнений.

Метод половинного деления. При решении нелинейного уравнения методом половинного деления задаются интервал [a,b], на котором существует только одно решение, и желаемая точность ε. Затем определяется середина интервала с=(а+b)/2 и проверяется условие F(a)∙F(c)<0. Если указанное условие выполняется, то правую границу интервала b переносим в среднюю точку с (b=c). Если условие не выполняется, то в среднюю точку переносим левую границу(a=c). Деление отрезка пополам продолжается пока |b-a|>ε. Структограмма решения нелинейных уравнений методом половинного деления приведена на рисунке.

Пока |b-a|>ε c=(a+b)/2

F(a)∙F(c)<0

 

да

 

нет

 

b=c

 

a=c

 

 

 

 

2. Рис. Структограмма для метода половинного деления

54. Сетевые технологии обработки данных. Компоненты вычислительных сетей.

Сетевые технологии обработки данных

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых было бы решать почти все классы их задач. Однако сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Также доступ к ресурсам компьютеров был затруднен из-за существующей ней централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных не отвечал высоким требованиям к надежности процесса обработки и затруднял развитие систем. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом. Появление персональных компьютеров потребовало нового подхода к организации систем обработки данных. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных.

Распределенная обработка данных — обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

·многомашинные вычислительные комплексы (МВК);

·компьютерные (вычислительные) сети.

Многомашинные вычислительные комплексы могут быть:

·локальными при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

·дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.

Обобщенная структура компьютерной сети

Компьютерные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерной сети от многомашинного вычислительного комплекса:

1.Размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до тысяч километров.

2.Разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи данных и управления системой могут быть реализованы в

одной ЭВМ, то в вычислительных сетях эти функции распределены между различными ЭВМ.

3. Необходимость решения в сети задачи маршрутизации сообщений. Сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

Станция — аппаратура, которая выполняет функции, связанные с передачей и приемом информации .Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда.Физическая передающая среда — линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных. На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами.

Обобщенная структура компьютерной сети приведена на слайде.

Классификация вычислительных сетей

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

·глобальные сети (WAN — Wide Area Network);

·региональные сети (MAN — Metropolitan Area Network); N

·локальные сети (LAN—Local Area Network).

Глобальная вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно расстояние между абонентами региональной вычислительной сети составляет десятки — сотни километров.

Локальная вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории: В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 - 2,5 км.

Практика применения персональных компьютеров в различных отраслях науки техники и производства показала, что наибольшую эффективность от внедрения вычислительной техники обеспечивают не отдельные автономные ПК, а локальные вычисли тельные сети.

Компоненты вычислительных сетей

Типичная вычислительная сеть включает в себя шесть основных компонентов.1. Основным составляющим элементом сети является настольный ПК, такой, как IBM-совместимый компьютер. Его называют «клиентом» или «рабочей станцией» (реже - автоматизированными рабочими местами или сетевыми станциями).2. Сервер - это любая сетевая ЭВМ, обслуживающая другие сетевые ЭВМ. Сервером обычно является высокопроизводительный ПК с жестким диском

большой емкости. Он играет роль центрального узла, на котором пользователи ПК могут хранить свою информацию, печатать файлы и обращаться к его сетевым средствам. В одноранговых сетях выделенный сервер отсутствует. Существуют серверы различных типов, которые определяются типом предоставляемых услуг.

Файловый сервер предоставляет другим ЭВМ (клиентам) доступ к данным, которые хранятся во внешней памяти сервера. Таким образом, на файловый сервер возложены все задачи по безопасности хранения данных, поиску данных, архивированию и др. Внешняя память сервера становится распределяемым ресурсом, так как её могут использовать несколько клиентов.

3. Каждый компьютер сети, включая сервер, оснащен платой сетевого адаптера (сетевым интерфейсом, модулем, картой). Сетевые интерфейсные платы представляют собой дополнительные платы, устанавливаемые на материнскую плату ПК. К сетевой плате подключаются сетевые кабели.

Адаптер вставляется в свободное гнездо (слот) материнской платы. Эти адаптеры связывают компьютер с сетевым кабелем. Сетевая плата определяет тип локальной сети. На практике используют два типа локальных сетей - Ethernet и Token Ring. Оба типа имеют модификации.

Многие ПК поставляются уже готовыми к работе в сети и включают в себя сетевой адаптер. Для построения сетей применяют 8-, 16- и 32-битовые сетевые платы. Сервер обычно оснащают 32битовой картой. Для обычных рабочих станций используют недорогие 16-битовые.4. Все соединения с сети осуществляются посредством специальных сетевых кабелей.

В качестве сетевого кабеля могут применяться и телефонные линии.

Основные типы сетевого кабеля:

-Витая пара - позволяет передавать информацию со скоростью 10 Мбит/с (либо 100 Мбит/с), легко наращивается.

-Толстый Ethernet - коаксиальный кабель с волновым сопротивлением 50 Ом. Обладает высокой помехозащищенностью.

Тонкий Ethernet - это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. Соединения с сетевыми платами производятся при помощи специальных (байонетных) разъемов и тройниковых соединений. а общее расстояние по сети -- 1000м.

- Оптоволоконные линии -- наиболее дорогой тип кабеля. Скорость передачи по ним информации достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует.

5.Совместно используемые периферийные устройства -- жесткие диски большой емкости, принтеры, цветные и слайд-принтеры, дисководы CD-ROM и накопители на магнитной ленте для резервного копирования.

6.Сетевое оборудование, такое как концентраторы и коммутаторы, которые соединяют между собой ПК и принтеры

Концентратор и коммутатор относятся к разным типам активного сетевого оборудования, которое используется для соединения устройств сети. Они различаются способом передачи в сеть поступающих данных (трафика).

Сеть включает в себя три основных программных компонента:1. Сетевую операционную систему, которая управляет функционированием сети.2. Сетевые приложения и утилиты - это программы, инсталлируемые и выполняемые на сервере. 3. Бизнес-приложения - это программы, реализующие в компании конкретные бизнес-функции.

55. Принципы организации и основные топологии вычислительных сетей.

Принципы организации и основные топологии вычислительных сетей

Сетевая топология – это обобщенная геометрическая характеристика компьютерной сети. в сети Она определяет схему физического подключения компьютеров в единую сеть.

К основным топологиям относят шинную, звездообразную, кольцевую.

1) Шина-Каждый компьютер в сети подключен последовательно к другому компьютеру в линейной последовательности. Сеть начинается с сервера или основного компьютера и завершается последним компьютером сети. В ней используется один кабель, называемый магистралью или сегментом, вдоль которого подключены все компьютеры.

Шина — пассивная топология: компьютеры только слушают передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому выход одного или нескольких компьютеров из строя никак не сказывается на работе сети.

2)Кольцо-Каждый компьютер подключен к другому компьютеру в кольцевой сети.Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии шина, здесь каждый компьютер выступает в роли повторителя, усиливая сигналы и передавая их следующему компьютеру. Поэтому выход из строя хотя бы одного компьютера приводит к падению сети. Способ передачи данных по кольцу называется передачей маркера.

3)Звезда-Каждый компьютер в сети подключен к центральной точке обмена данными. При топологии звезда все компьютеры с помощью сегментов кабеля подключаются к центральному устройству коммутации (УК). Сигналы от передающего компьютера поступают через УК ко всем остальным. Недостатки этой топологии: дополнительный расход кабеля, установка УК. Главное преимущество этой топологии перед шиной — более высокая надежность. Выход из строя одного или нескольких компьютеров на работу сети не влияет.

4)Ячеистая топология (решетка)-Сеть с ячеистой топологией обладает высокой избыточностью и надежностью, так как каждый компьютер в такой сети соединен с каждым другим отдельным кабелем.

5)Комбинированные топологии. Чаще всего используются две комбинированные топологии: звезда-шина и звезда-кольцо. Звезда-шина — несколько сетей с топологией звезда объединяются при помощи магистральной линейной шины (к концентратору подключены компьютеры, а сами концентраторы соединены шиной). Выход из строя одного компьютера не сказывается на работе всей сети, а сбой в работе концентратора влечет за собой отсоединение от сети только подключенных к нему компьютеров и концентраторов. Звезда-кольцо — отличие состоит только в

том, что концентраторы в звезде-шине соединяются магистральной линейной шиной, а в звездекольце концентраторы подсоединены к главному концентратору, внутри которого физически реализовано кольцо.

56.Принципы построения сетей.

Принципы построения сетей

Internet – всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающих друг с другом информацией по каналам общественных телекоммуникаций (выделенным телефонным аналоговым и цифровым линиям, оптическим каналам связи и радиоканалам, в том числе спутниковым линиям связи).

Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи.

Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи). Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через провайдера или корпоративную сеть.

Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную сеть.

Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней.

Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост – это любой компьютер, являющийся постоянной частью Internet, т.е. соединенный по Internet – протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Для подсоединения линий связи к компьютерам используются специальные электронные устройства, которые называются сетевыми платами, сетевыми адаптерами, модемами и т.д.

Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами осуществляется по высокоскоростным каналам связи или магистралям. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть сети Интернет.

Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных

провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.

Передача информации в Интернет обеспечивается благодаря тому, что каждый компьютер в сети имеет уникальный адрес (IP-адрес), а сетевые протоколы обеспечивают взаимодействие разнотипных компьютеров, работающих под управлением различных операционных систем.

Восновном в Интернет используется семейство сетевых протоколов (стек) TCP/IP. На канальном

ифизическом уровне стек TCP/IP поддерживает технологию Ethernet, FDDI и другие технологии. Основой семейство протоколов TCP/IP является сетевой уровень, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень обеспечивает перемещение пакетов в сети и управляет их машрутизацией. Размер пакета, параметры передачи, контроль целостности осуществляется на транспортном уровне TCP.

Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К основным прикладным протоколам относятся: протокол удаленного досткпа telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы электронной почты:

SMTP, POP, IMAP, MIME.

57.Сервисы Интернета. Средства использования.

Организация сети Интернет

Интернет называют сетью сетей, т.к. это общедоступное объединение многих компьютерных сетей с установленными правилами обмена информацией (протоколами). Сетевой протокол – совокупность правил, регулирующих порядок функционирования сети.

TCP/IP – это единый набор протоколов передачи данных, который должна использовать каждая сеть, если она хочет войти в сообщество Интернет-сетей. В названии TCP/IP отражены имена двух главных сетевых протоколов (весь набор протоколов шире). Каждый подключенный к Интернету компьютер должен быть оснащен программным обеспечением TCP/IP.

TCP (Transmission Control Protocol) – протокол контроля передачи данных. Он обеспечивает надежность передачи данных. Интернет построен так, что при пересылка данные делятся на части

– пакеты. Пакеты следуют к месту назначения различными маршрутами и прибывают в конечную точку в другом порядке, нежели отправлялись. Они могут теряться и дублироваться. Протокол TCP устраняет все возникающие проблемы и обеспечивает сборку всех пакетов в единое сообщение.

IP (Internet Protocol) – межсетевой протокол (протокол маршрутизации, транспортный протокол). Определяет основные правила, которым должны следовать компьютеры для обмена данными: формат пакетов, формат адресов компьютеров сети, маршрут пакета, правила обработки пакетов маршрутизаторами и компьютерами сети. 8

Провайдеры – поставщики услуг Интернета (ISP – Internet Service Provider) – фирмы, специализирующиеся на предоставлении доступа к Интернету и подключающие пользователей к сети. Существуют различные типы соединения компьютеров провайдера и пользователя

Коммутируемый удаленный доступ (англ. dial-up) – сервис, позволяющий компьютеру, используя модем и телефонную сеть общего пользования, подключаться к другому компьютеру для доступа в сеть Интернет. Используется телефонная линия (при соединении с Интернетом линия занята). Модем (аббревиатура, составленная из слов модулятор-демодулятор) – устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Выделенные линии предназначены только для подключения к Интернету, поэтому обеспечивают высокую скорость соединения и обмена данными. Технология ADSL (Asymmetric Digital Subscribe Line) была специально разработана для высокоскоростного доступа к сети Интернет на абонентских линиях телефонной сети общего пользования. При работе по технологии ADSL вся информация идет по одной, уже существующей телефонной линии. Новая технология позволяет ее просто более полно использовать.

Каждому компьютеру, постоянно или временно подключенному к Интернету, присваивается уникальный номер, который называют IP-адресом. Это число длиной 32 бита, которое представляется в виде четырех десятичных чисел (каждое не более 255), разделенных точками.

Например: 195.34.32.11.

По IP-адресам компьютеры связываются друг с другом. Компьютер, который подключен к Интернету постоянно, называется хостом (от англ. host – гнездо). IP-адрес хоста всегда постоянный. IP-адрес компьютера с сеансовым способом подключения является динамическим. Такому компьютеру адрес присваивается при входе в сеть из числа тех, что имеются в распоряжении провайдера.

Однако чаще пользователи Интернета применяют более удобную адресацию, которая называется системой имен доменов (Domain Name System, DNS). DNS – это иерархический распределенный метод организации пространства имен в сети Интернет, позволяющий уйти от цифровой адресации.

Домен (англ. domain – область) – это группа хостов, объединенная по определенному признаку и имеющая одно имя. Система доменных имен многоуровневая. Домены первого уровня формируются по территориальному (ru – Россия) или функциональному (edu – образовательные) признаку. Домены второго уровня группируют хосты по территории (msk – Москва) или по принадлежности одной организации.

В доменном адресе имена доменов записываются через точку по возрастанию уровня. Например, если один из компьютеров тольяттинской фирмы «Аист» назван «mail», его доменное имя может быть следующим: mail.aist.tlt.ru.

Сервисы Интернета

Интернет предоставляет пользователю различные виды услуг. Электронная почта (E-mail от англ. Electronic mail) является основным видом сетевых услуг. Обмен сообщениями реализуется через систему почтовых серверов. Telnet – служба, обеспечивающая доступ к ресурсам удаленных

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]