Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основы токсикологии

.pdf
Скачиваний:
149
Добавлен:
13.02.2016
Размер:
8.39 Mб
Скачать

тиобарбитураты, уретан

2.Снотворные (седативные)

Барбитураты,

хлоралгидрат, талидомид,

этанол и

другие

спирты, бром

 

 

 

 

 

 

 

 

 

3.Аналгетики

Морфин и его аналоги

 

 

 

4.Антипиретики

Салицилаты, фенацетин, хинин

 

 

5.Гормоны

Эстроген,

гестаген,

андроген,

кортикостероиды,

анаболические стероиды, инсулин

 

 

 

 

 

6.Химеотерапевтические

Пенициллин, сульфониламиды, стрептомицин, эритромицин,

средства

ПАСК

 

 

 

 

7.Прочиче

Иприты, триметиленмеламин, аминоптерин,

свинец,

мышьяк, тиоурацил, иод и т.д.

 

 

 

 

 

После прохождения барьера вещества оказываются в крови плода. Отсюда, в соответствии с общими закономерностями, они распределяются в его органах и тканях. Между взрослым организмом и плодом существует огромная разница в строении и свойствах тканей. Эти особенности лежат в основе иной реакции плода на многие токсиканты (см. ниже).

10. Депонирование

Под депонированием понимают особый вид распределения ксенобиотиков в организме, проявляющийся накоплением, а затем относительным постоянством их содержания в определенном органе или ткани, в течение нескольких суток - многих лет.

Депонирование имеет три основные причины: 1. Активный захват клетками ксенобиотика с последующим его удержанием; 2. Высокое химическое сродство вещества к определенным биомолекулам; 3. Значительная растворимость ксенобиотика в липидах.

Количественные характеристики процесса депонирования существенно зависят от условий, в которых они изучаются и потому носят достаточно относительный (больше/меньше) характер.

10.1. Депонирование вследствие химического сродства и растворимости в липидах

Различные токсиканты могут образовывать с биологическими молекулами ковалентные связи и таким образом накапливаться в тканях. Типичными примерами являются алкилирующие агенты тип ипритов, взаимодействующие с нуклеиновыми кислотами, многие металлы, образующие ковалентные связи с белками и другими лигандами и т.д. Мышьяк вследствие высокого сродства к кератину депонируется в ногтях и волосах. Свинец депонируется в костной ткани. Чрезмерное поступление железа в организм приводит к развитию гемосидероза, который может сохраняться на протяжение всей жизни.

Другой механизм депонирования - накопление липофильных веществ в жировой ткани. Таким образом, в организме в течение многих лет сохраняются полигалогенированные ароматические углеводороды (ПАУ), некоторые хлорорганические инсектициды (ДДТ и т.д.).

Существуют возможности влиять на процесс депонирования путем:

-прекращения поступления вещества в организм;

-усиления механизмов естественного выведения вещества. Так, кальций и свинец распределяются, депонируются и метаболизируют практически идентично. Поэтому фиксированный в костях свинец может быть мобилизован при понижении содержания кальция в крови. Усиление вентиляции легких при ингаляции карбогена усиливает выделение летучих веществ (эфиры и т.д.) и высвобождение их из жировой ткани;

-введения веществ, взаимодействующих с ксенобиотиком. Вещества, имеющие высокое сродство к депонированному агенту, могут вступить с ними во взаимодействие и вывести из места депонирования. Таким способом можно удалить из организма некоторые тяжелые металлы, например свинец, с помощью комплексообразователей (ЭДТА, унитиола и т.д.).

10.2. Депонирование вследствие активного захвата ксенобиотика

Если вещество поступает в клетки против градиента концентрации, то оно может накапливаться в них. Это имеет место в определенных органах и тканях в отношении лишь очень ограниченного количества веществ. Механизм депонирования выявлен для некоторых аналогов биогенных аминов (5-ОН-триптамина, хлорфенилаланина и др.), белковых токсинов (холерного, дифтирийного, столбнячного, ботулотоксина), йода и др.

ОГЛАВЛЕНИЕ/ T4 СТАТЬЯ

М а р т, 2 0 0 3 г.

С. А. КУЦЕНКО ОСНОВЫ ТОКСИКОЛОГИИ, Санкт-Петербург, 2002

ГЛАВА 4.4. МЕТАБОЛИЗМ КСЕНОБИОТИКОВ

Многие ксенобиотики, попав в организм, подвергаются биотрансформации и выделяются в виде метаболитов. В основе биотрансформации по большей части лежат энзиматические преобразования молекул. Биологический смысл явления - превращение химического вещества в форму, удобную для выведения из организма, и тем самым, сокращение времени его действия.

Метаболизм ксенобиотиков проходит в две фазы (рисунок 1).

Рисунок 1. Фазы метаболизма чужеродных соединений

В ходе первой фазы окислительно-восстановительного или гидролитического превращения молекула вещества обогащается полярными функциональными группами, что делает ее реакционно-способной и более растворимой в воде. Во второй фазе проходят синтетические процессы конъюгации промежуточных продуктов метаболизма с эндогенными молекулами, в результате чего образуются полярные соединения, которые выводятся из организма с помощью специальных механизмов экскреции.

Разнообразие каталитических свойств энзимов биотрансформации и их низкая субстратная специфичность позволяет организму метаболизировать вещества самого разного строения. Вместе с тем, у животных разных видов и человека метаболизм ксенобиотиков проходит далеко не одинаково, поскольку энзимы, участвующие в превращениях чужеродных веществ, часто видоспецифичны.

Следствием химической модификации молекулы ксенобиотика могут стать:

1.Ослабление токсичности;

2.Усиление токсичности;

3.Изменение характера токсического действия;

4. Инициация токсического процесса.

Метаболизм многих ксенобиотиков сопровождается образованием продуктов существенно уступающих по токсичности исходным веществам. Так, роданиды, образующиеся в процессе биопревращения цианидов, в несколько сот раз менее токсичны, чем исходные ксенобиотики. Гидролитическое отщепление от молекул зарина, зомана, диизопропилфторфосфата иона фтора, приводит к утрате этими веществами способности угнетать активность ацетилхолинэстеразы и существенному понижению их токсичности. Процесс утраты токсикантом токсичности в результате биотрансформации обозначается как "метаболическая детоксикация".

Впроцессе метаболизма других веществ образуются более токсичные соединения. Примером такого рода превращений является, в частности, образование в организме фторуксусной кислоты при интоксикации фторэтанолом.

Вряде случаев в ходе биотрансформации ксенобиотиков образуются вещества, способные совершенно иначе действовать на организм, чем исходные агенты. Так, некоторые спирты (этиленгликоль), действуя целой молекулой, вызывают седативно-гипнотический эффект (опьянение, наркоз). В ходе их биопревращения образуются соответствующие альдегиды и органические кислоты (щавелевая кислота), способные повреждать паренхиматозные органы и, в частности, почки. Многие низкомолекулярные вещества, являющиеся факультативными аллергенами, подвергаются в организме метаболическим превращениям с образованием реакционноспособных промежуточных продуктов. Так, соединения, содержащие в молекуле аминоили нитрогруппу в ходе метаболизма превращаются в гидроксиламины, активно взаимодействующие с протеинами крови и тканей, формируя полные антигены. При повторном поступлении таких веществ в организм помимо специфического действия развиваются аллергические реакции.

Порой сам процесс метаболизма ксенобиотика является пусковым звеном в развитии интоксикации. Например, в ходе биологического окисления ароматических углеводородов инициируются свободно-радикальные процессы в клетках, образуются ареноксиды, формирующие ковалентные связи с нуклеофильными структурами клеток (белками, сульфгидрильными группами, нуклеиновыми кислотами и т.д), активирующие перекисное окисление липидов биологических мембран (рисунок 2). В итоге инициируется мутагенное, канцерогенное, цитотоксическое действие токсикантов.

Рисунок 2. Образование ареноксидов в процессе метаболизма ароматических полициклических углеводородов при участии оксидаз смешанных функций (ОСФ)

Аналогично ареноксидам на клетки действуют N-оксиды, нитрозамины, гидроксиламины, также являющиеся канцерогенами и мутагенами. В опытах на собаках установлена прямая зависимость между канцерогенной активностью (рак мочевого пузыря) и концентрацией в моче продуктов N-окисления веществ в ряду: 1-нафтиламин, 2-нафтиламин, 4-аминодифенил.

По такому же механизму действуют на организм галогенированный бензол, нафтанол и многие другие ксенобиотики.

Процесс образования токсичных продуктов метаболизма называется "токсификация", а продукты биотрансформации, обладающие высокой токсичностью - токсичными метаболитами. Во многих случаях токсичный метаболит является не стабильным продуктом, подвергающимся дальнейшим превращениям. В этом случае он также называется промежуточным или реактивным метаболитом. Реактивные метаболиты это как раз те вещества, которые часто и вызывают повреждение биосистем на молекулярном уровне. Общим свойством практически всех реактивных метаболитов является их электродефицитное состояние, т.е. высокая

электрофильность. Эти вещества вступают во взаимодействие с богатыми электронами (нуклеофильными) молекулами, повреждая их. К числу последних относятся макромолекулы клеток, в структуру которых входят в большом количестве атомы кислорода, азота, серы. Это, прежде всего, белки и нуклеиновые кислоты. Реактивные метаболиты либо присоединяются к нуклеофильным молекулам, образуя с ними ковалентные связи, либо вызывают их окисление. В обоих случаях структура макромолекул нарушается, следовательно, нарушаются и их функции.

Биоактивация далеко не всегда сопровождается повреждением биосубстрата, поскольку одновременно в организме протекают процессы детоксикации и репарации. Интенсивность этих процессов может быть достаточной для компенсации ущерба, связанного с образованием реактивных метаболитов. Тем не менее при введении высоких доз токсиканта, повторном воздействии защитные механизмы могут оказаться несостоятельными, что и приведет к развитию токсического процесса.

1. Концепция l и ll фазы метаболизма ксенобиотиков

l фаза метаболизма в широком смысле может быть определена, как этап биотрансформации, в ходе которого к молекуле соединения либо присоединяются полярные функциональные группы, либо осуществляется экспрессия таких групп, находящихся в субстрате в скрытой форме. Это достигается либо путем окисления или (значительно реже) восстановления молекул с помощью оксидо-редуктаз, либо путем их гидролиза эстеразами и амидазами.

Фаза ll - этап биологической конъюгации промежуточных продуктов метаболизма с эндогенными молекулами, такими как глутатион, глюкуроновая кислота, сульфат и т.д. Специфические системы транспорта конъюгированных дериватов обеспечивают их выведение из организма.

В ходе биопревращений липофильный и, следовательно, трудновыводимый ксенобиотик становиться гидрофильным продуктом, что обусловливает возможность его быстрой экскреции.

Классическим примером биотрансформации ксенобиотиков является метаболизм бензола в организме (рисунок 3)

Рисунок 3. Метаболизм бензола

В ходе l фазы метаболизма обеспечивается превращение жирорастворимого субстрата в полярный продукт путем включения в молекулу гидроксильной группы. В ходе ll фазы образовавшийся фенол взаимодействует с эндогенным сульфатом, в результате полярность образующегося продукта еще более возрастает. Фенилсульфат прекрасно растворяется в воде и легко выделяется из организма.

Далеко не всегда преобразования молекулы представляет собой простое чередование 1 и 11 фаз метаболизма. Возможна и более сложная последовательность реакций биопревращений (рисунок 4).

Рисунок 4. Схема последовательности метаболических превращений дибромэтана (GST - глутатион-S-трансфераза; GSглутатион)

2. Локализация процессов биотрансформации

Основным органом метаболизма ксенобиотиков в организме человека и млекопитающих является печень, главным образом благодаря разнообразию и высокой активности здесь ферментов биотрансформации. Кроме того, портальная система обеспечивает прохождение всех веществ, поступивших в желудочно-кишечный тракт, именно через печень, до того, как они проникнут в общий кровоток. Это также определяет функциональное предназначение органа. Тончайшая сеть печеночных капилляров, огромная площадь контакта между кровью и поверхностью гепатоцитов, обеспечивающаяся микроворсинками базальной поверхности печеночных клеток, обусловливают высокую эффективность печеночной элиминации токсиканта на клеточном уровне (рисунок 5).

Рисунок 5. Локализация этапов метаболических превращений ксенобиотиков в организме

Продукты l фазы метаболизма поступают в общий кровоток и могут оказывать действие на органы и системы. Печень выбрасывает в кровь и продукты ll фазы метаболизма. Из крови продукты превращения могут захватываться почками, легкими, другими органами, повторно печенью для экскреции с желчью. С желчью метаболиты поступают в кишечник, где частично реабсорбируются и повторно поступать в печень (цикл печеночной рециркуляции).

Несмотря на доминирующую роль печени в метаболизме ксенобиотиков, другие органы также принимают участие в этом процессе. Почки и легкие содержат энзимы и l и ll фаз метаболизма. Особенно велика роль почек, поскольку в этом органе имеется специфическая система захвата и катаболизма продуктов конъюгации, образующихся в печени. Активность других органов, таких как кишечник, селезенка, мышечная ткань, плацента, мозг, кровь - значительно ниже, однако наличие энзимов, катализирующих процессы биотрансформации, при отравлении токсифицирующимися ксенобиотиками, имеет ключевое значение в развитии патологических процессов в этих органах. В процессе внепеченочного метаболизма могут образовываться продукты, как аналогичные продуктам печеночного происхождения, так и отличные от них.

Иногда в ходе внепеченочного метаболизма может осуществляться активация метаболитов, образующихся в печени.

Энзимы, участвующие в метаболизме ксенобиотиков, локализованы в основном внутриклеточно. Небольшое их количество определяется в растворимой фракции циотозоля, митохондриях, большинство же связаны с гладким эндоплазматическим ретикулумом (таблица 1). Методом ультрацентрфугирования гладкий эндоплазматический ретикулум выделяется из исследуемых клеток в виде фрагментов мембранных структур, называемых микросомами. Поэтому основная группа ферментов, участвующих в метаболизме ксенобиотиков, получила название "микросомальные энзимы".

Таблица 1. Энзиматические реакции метаболизма ксенобиотиков и локализация энзимов внутри гепатоцита.

1 ФАЗА

ТИП РЕАКЦИИ

 

ЛОКАЛИЗАЦИЯ

 

1.

Окисление:

микросомы

Гидроксилирование

Декарбоксилирование

микросомы

Образование

оксидов

микросомы

Десульфурирование

микросомы

Дегалогенирование

микросомы

Окисление

спиртов

микросомы, цитозоль

Окисление

альдегидов

цитозоль

2.

Восстановление:

цитозоль

Восстановление

альдегидов

Азо-восстановление

микросомы

Восстановление нитросоединений

микросомы, цитозоль

3.

Гидролиз:

микросомы, цитозоль

Расщепление

эфиров

Расщепление амидных связей

микросомы, цитозоль

2 ФАЗА

ТИП РЕАКЦИИ

 

 

ЛОКАЛИЗАЦИЯ

Конъюгация с глюкуроновой кислотой

микросомы

Конъюгация

с

сульфатом

цитозоль

Ацилирование

 

 

микросомы, цитозоль

Конъюгация

с

глутатионом

цитозоль

Метилирование

 

 

цитозоль

Часть ферментных систем метаболизма ксенобиотиков локализуются в жидкостях организма. Прежде всего, это эстеразы плазмы крови, участвующие в гидролизе целого ряда чужеродных веществ, таких как ФОС, некоторые алкалоиды (атропин), лекарства (суксаметоний, прокаин) и др.

3. Первая фаза метаболизма

Разнообразие чужеродных химических веществ, способных подвергаться в организме метаболическим превращениям, является следствием многообразия энзимов, участвующих в l фазе биотрансформации и их низкой субстратной специфичности. Многие из энзимов существуют в нескольких формах (изоферменты), различающихся по своим физикохимическим свойствам (молекулярная масса, электрофоретическая подвижность, абсорбцией света с разними длинами волн), отношению к индукторам и ингибиторам (см. ниже) и активностью в отношении субстратов различного строения.

Энзимы l фазы, участвующие в процессе биотрансформации ксенобиотиков, можно классифицировать в соответствии с типом активируемой ими реакции:

1.Оксидазы смешанной функции: цитохромР-450 (Р-450) и флавинсодержащие монооксигеназы (ФМО);

2.Простогландинсинтетазы - гидропероксидазы (ПГС) и другие пероксидазы;

3.Алкогольдегидрогеназы и альдегиддегидрогеназы;

4.Флавопротеинредуктазы;

5.Эпоксидгидролазы;

6.Эстеразы и амидазы.

Примеры веществ, подвергающихся метаболизму при участии указанных энзимов, приведены в таблице 2.

Таблица 2. Примеры веществ, подвергающихся биотрансформации при участии энзимов l фазы

Энзимы и реакции

Вещества

 

 

1.

ЦитохромР-450

 

 

-эпоксид/гидроксилирование

Алдрин,

афлатоксины

-N,O,S-деалкилирование

Этилморфин,

метилмеркаптан

-N,S,P-окисление

Тиобензамид, 2-ацетиламинофторид

-десульфурация

Паратион,

сероуглерод

-дегалогенирование

СCl4,

хлороформ

-нитро-восстановление

Нитробензол

 

-азо-восстановление

О-аминоазотолуол

 

2.

ФМО

 

 

-N,S,P-окисление

Никотин,

тиомочевина

-десульфурация

 

 

3.

Простогландинсинтетаза

Ацетаминофен

 

-дегидрирование

 

-N-деалкилирование

Диметиланилин

 

-эпоксид/гидроксилирование

Бенз(а)пирен

 

-окисление

Билирубин

 

4.Алкогольдегидрогеназа

-окисление

Метанол,

этанол,

гликоли

-восстановление

Альдегиды,

 

кетоны

5.Альдегиддегидрогеназа

-окисление Альдегиды

6.Эстеразы, амидазы

-гидролиз

Параоксон,

зарин

7.Эпоксидгидролазы

-гидролиз Ареноксиды

Особое значение для биотрансформации ксенобиотиков имеют микросомальные энзимы. Как уже указывалось, морфологическим эквивалентом микросом в интактных клетках является гладкий эндоплазматический ретикулум. Ферменты микросом не принимают участие в окислении большинства эндогенных соединений, таких как аминокислоты, нуклеотиды, сахара и т.д., для которых существуют специфические пути превращения. Однако в метаболизме некоторых эндогенных соединений (например, стероидов) микросомальные оксидазы принимают участие наряду со специфическими ферментными комплексами. Под влиянием этих энзимов могут метаболизировать некоторые жирные кислоты, простогландины и т.д. Кофакторы микросомальных монооксигеназ, принимающих участие в метаболических превращения ксенобиотиков, представлены на рисунке 6.

Рисунок 6. Кофакторы энзимов l фазы метаболизма ксенобиотиков: (1) цитохромР-450 зависимые оксидазы (Р-450); (2) флавинсодержащие монооксигеназы (ФМО)

Входе микросомального окисления часто образуются реакционноспособные промежуточные продукты. Некоторые из них нестабильны и подвергаются дальнейшему превращению, другие достаточно устойчивы.

Втаблице 3 представлены некоторые примеры биопревращений, приводящих к образованию реактивных продуктов.

Таблица 3. Примеры биотрансформации ксенобиотиков с образованием активных промежуточных продуктов в ходе l фазы метаболизма

Исходное веществоПродукт реакции

Класс соединения

Энзимы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ацилгалоген

Р-450

хлороформ

фосген

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

аллиловый спирт

акролеин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дихлорэтан хлорацетальдегид

ненасыщенный альдегидалкогольдегидрогеназа

альдегид Р-450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

алкил

Р-450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

диметил

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

диазониум

ион метилдиазониума

 

нитрозамин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Р-450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дикетон

алкоголь

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

гексан

гександион

 

дегидрогеназа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

эпоксид

Р-450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

винилхлорид

хлорэтиленэпоксид

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Р-450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

диол эпоксид

эпоксидгидролаза

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

пероксидаза

бенз(а)пирен

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

бензпирендиолэпоксид

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

хинол

Р-450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

пероксидаза

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

бензол

бензохинол

 

 

 

CCL4

CCL3*

алкильный

 

тетрахлор

Р-450

тетрахлорметил-радикалрадикал

метан

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

хинонимин пероксидаза р-аминофенол р-бензохинонимин

3.1. Окислительно-восстановительные превращения

3.1.1. Оксидазы смешанной функции

3.1.1.1. ЦитохромР-450-зависимая монооксигеназная система

Энзимы рассматриваемой группы, цитохромР-450 зависимые оксидазы (Р-450), как правило, обладают низкой субстратной специфичностью, вызывая превращения веществ самого разного строения, и потому часто называются оксидазами смешенной функции (ОСФ). Р-450 относятся к группе гемопротеинов типа цитохромов b - пигментов, активно связывающих монооксид углерода. Название "цитохромР-450" энзимы получили в силу того, что максимум поглощения света пигментом, связанным с СО, осуществляется при длине волны 450 нм.

Р-450 представляют собой семейство энзимов, локализующихся в эндоплазматическом ретикулуме, которые могут быть разделены с помощью иммунологических и иных методов на несколько подсемейств. Отдельные ткани содержат несколько различных изоформ Р-450. Встречаются тканеспецифичные формы энзимов. Изоферменты Р-450 часто проявляют перекрестную субстратную специфичность, таким образом, как правило, более чем один изофермент принимает участие в метаболизме ксенобиотика. Наличие специфических форм энзимов обусловлено генетическими механизмами, а повышение содержания в тканях различных изоферментов индуцируется действием на организм различных ксенобиотиков: лекарств, ядов, экотоксикантов. Р-450 подвержены не только активации, но и инактивации, как исходными ксенобиотиками, так и их реактивными метаболитами.

Реакции микросомального окисления, протекающие при участии Р-450, как правило, зависят от содержания O2 и НАДФН в среде. Молекулярный кислород активируется цитохромомР-450 (или другими цитохормами, например, Р-448). Активация осуществляется с помощью НАДФН при участии флавин-содержащего энзима НАДФН-цитохромР-450 редуктазы. Поскольку донором электронов в превращениях субстратов, катализируемых этими энзимами, является НАДФН, суммарное уравнение реакции может быть записано следующим образом:

ЦитохромР-450, НАДФН-цитохромР-450 редуктаза и фосфолипиды биологических мембран, в которые встроены оба энзима, образуют микросомальный монооксигеназный комплекс. Несмотря на то, что энзимы комплекса связаны с биологическими мембранами, их свойства могут быть изучены in vitro.

Установлены основные закономерности протекания ферментативных процессов с участием микросомального монооксигеназного комплекса (рисунок 7).

Рисунок 7. Упрощенная схема превращения субстрата при участии Р-450

Как видно из рисунка на начальном этапе ксенобиотик (S) вступает во взаимодействие с окисленной формой цитохромаР-450. Затем к этому комплексу с помощью НАДФН-зависимой цитохромР-450 редуктазы присоединяется электрон, донором которого является восстановленный НАДФН. После этого комплекс взаимодействует с кислородом. После взаимодействия со вторым электроном (донор - НАДФН) происходит активация связанного с цитохромом кислорода, который приобретает способность связывать протоны и образовывать воду. Образовавшаяся при этом форма цитохромаР-450 гидроксилирует субстрат.

Метаболизируемое вещество не связывается непосредственно с геминовой группой цитохромаР-450. Оно присоединяется к белковой части цитохрома. Процесс превращения ксенобиотиков чувствителен к СО, поскольку это вещество вытесняет кислород из связи с железом геминовой группы цитохромаР-450. Некоторые оксидазы резистентны к СО (образование N-оксидов).

Поскольку Р-450 - гемопротеины, их активность отчасти регулируется процессами синтеза гема, т.е. связана с метаболизмом железа. Нарушение метаболизма, голодание, понижение соотношения НАДФН/НАДФ+ могут приводить к снижению активности Р-450.

3.1.1.1.1. Реакции, катализируемые цитохромомР-450

Окисление ксенобиотиков при участии Р-450 - основной механизм их биотрансформации в l фазе метаболизма. Р-450 катализирует окисление практически всех классов органических молекул. Субстратом для энзимов являются и простые молекулы типа хлороформа и стероиды и сложные гетероциклические соединения, например антибиотик циклоспорин. Р-450 могут катализировать не только окисление, но и восстановление некоторых биосубстратов, например четыреххлористого углерода, галотана, некоторых других галогенированных углеводородов с образованием свободных радикалов. Такое необычное превращение реализуется в условия пониженного парциального давления кислорода в тканях.

Эпоксидирование и гидроксилирование ароматических соединений.

Метаболизм полициклических и ароматических углеводородов сопровождается образованием реакционно-способных промежуточных продуктов метаболизма, в частности ареноксидов, способных вызывать некроз клеток и являющихся канцерогенами. Таким образом осуществляется, в частности, превращение бенз(а)пирена (см. выше) или нафталена: