Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основы токсикологии

.pdf
Скачиваний:
149
Добавлен:
13.02.2016
Размер:
8.39 Mб
Скачать

соединений сопровождается образованием аминов, которые, поступая в печень, вновь подвергается метаболизму. Бактериальная -глюкуронидаза и нитроредуктаза играют исключительно важную роль в процессе многоэтапной биоактивации 2,6-динитротолуола (рисунок 15).

Рисунок 15. Взаимодействие печеночных энзимов и энзимов флоры кишечника в процессе биоактивации канцерогена 2,4-динитротолуола

6. Факторы, влияющие на метаболизм ксенобиотиков

Способность органов и тканей метаболизировать ксенобиотики зависит от набора и активности энзимов, участвующих в процессе. В значительной степени активность энзимов является внутренней характеристикой конкретной ткани, определяется генетическими особенностями организма и зависит от пола и возраста. Дополнительными факторами, порой существенным образом влияющими на содержание и активность энзимов, являются условия окружающей среды. Это прежде всего химические вещества, выступающие в качестве индукторов или ингибиторов энзимов, питание и действие патогенных факторов (таблица 5).

Таблица 5. Факторы, влияющие на метаболизм ксенобиотиков

ЕСТЕСТВЕННЫЕ:

вид, пол, возраст, питание

ИНДУКТОРЫ ФЕРМЕНТОВ:

Барбитураты, полициклические углеводороды, андрогенные стероиды, анаболические стероиды, глюкокортикоиды и др.

ИНГИБИТОРЫ ФЕРМЕНТОВ:

Метирапон, 7,8-бензофлавон, кобальт, SKF-525 и др.

ПОВРЕЖДЕНИЯ СТРУКТУРЫ ОРГАНА:

Хлорированные углеводороды тироксин аллоксан морфин гепатотомия адреналэктомия

кастрация самцов, голод

6.1. Генетические факторы

Особи одного и того же вида живых существ порой значительно различаются по способности метаболизировать ксенобиотики. Это во многом детерминировано генетически. Так, в популяции людей выявляются лица, обладающие пониженной активностью цитохромР-450 зависимых оксидаз. "Слабые метаболизанты" могут отличаться отсутствием некоторых изоэнзимов, необходимых для катализа ряда превращений ксенобиотиков.

Полиморфизм метаболизма ксенобиотиков отмечен для процессов ацетилирования ароматических веществ, содержащих амино-, сульфо-, амидную группу. Лица со слабым напряжением процессов ацетилирования более подвержены некоторым аллергическим реакциям, вызываемым химическими веществами. С другой стороны, излишне напряженный процесс ацетилирования ксенобиотиков может иметь пагубные последствия в результате биоактивации арилгидразинов.

6.2. Пол и возраст

В опытах на лабораторных животных, в основном грызунах, показано, что половые гормоны принимают участие в регуляции активности энзимов метаболизма ксенобиотиков и прежде всего монооксигеназ. Так, взрослые самцы крыс быстрее метаболизируют такие вещества, как гексабарбитал, аминопирин, аминофенол и т.д. Вместе с тем анилин и его аналоги подвергаются биопревращению в организме самцов и самок с одинаковой скоростью. Кастрация нередко сопровождается снижением скорость метаболизма ксенобиотиков. У человека половые различия выражены не столь существенно.

Отличия метаболизма ксенобиотиков, обусловленные возрастом, наиболее отчетливо проявляются у новорожденных и лиц пожилого возраста. Хорошо известно, что недостаточно развитая система метаболизма ксенобиотиков у новорожденных делает их особенно чувствительными к ряду токсикантов. Токсический процесс может стать следствием как накапливающихся в организме исходных продуктов, так и промежуточных метаболитов, не подвергающихся дальнейшей биотрансформации.

В старческом возрасте наблюдается снижение клиаренса ксенобиотиков отчасти обусловленное понижением интенсивности метаболизма. Нарушение метаболизма ксенобиотиков печенью в старческом возрасте может являться следствием уменьшения интенсивности печеночного кровотока, хронических патологических процессов в печени, связанного с возрастом снижения активности ферментов.

6.3. Влияние химических веществ

Ксенобиотики, поступающие в организм, могут оказывать влияние на процессы метаболизма как самих этих веществ, так и других соединений, поступающих в организм одновременно или вслед за ними. Теоретически можно выделить три группы химических соединений, по-разному влияющих на метаболизм чужеродных веществ:

1.Практически не влияющие на активность энзимов метаболизма;

2.Повышающие активность энзимов - индукторы;

3.Угнетающие активность энзимов - ингибиторы.

Важно иметь в виду, что одно и то же вещество может выступать и как индуктор и как ингибитор метаболизма другого вещества, в зависимости от того в каком порядке ксенобиотики поступают в организм - сукцессии или комбинации (см. ниже).

6.3.1. Индукция энзимов

Многие химические вещества, как эндогенные, так и поступающие из окружающей среды, обладают способностью усиливать синтез в организме энзимов биотрансформации ксенобиотиков. Этот феномен, получивший название индукции энзимов, существенным образом определяет чувствительность живых существ к действию токсикантов. Несколько сот химических веществ совершенно разного строения, как установлено, являются индукторами монооксигеназ и других ферментативных систем. К числу сильных индукторов микросомальных ферментов принадлежат многие лекарства и промышленные токсиканты. Все индукторы - жирорастворимые органические вещества. Их действие, как правило, неспецифично, то есть индуктор вызывает повышение активности более чем одного энзима. Индукция возможна, как правило, при повторном введении соединения.

6.3.1.1. Индукторы метаболизма

Многочисленные индукторы монооксигеназных систем можно отнести к одному из двух классов. Представителем первого класса является фенобарбитал, другие барбитураты, некоторые лекарства и инсектициды. Ко второму классу индукторов относятся в основном полициклические углеводороды: ТХДД, 3-метилхолантрен, бенз(а)пирен и т.д. Самым сильным из известных индукторов монооксигеназ является 2,3,7,8-тетрахлордибензо-р-диоксин (ТХДД). Его эффективная доза составляет 1 мкг/кг массы. В подавляющем большинстве случаев ксенобиотики проявляют свойства индукторов, действуя в значительно больших дозах (более

10 мг/кг).

Фенобарбитал вызывает выраженную пролиферацию гладкого эндоплазматического ретикулума в гепатоцитах и увеличение активности Р-450. В результате возрастает мощность таких процессов, как деметилирование ксенобиотиков (нитроанизол), гидроксилирование (барбитураты), эпоксидирование (альдрин).

Индукция, вызываемая полициклическими углеводородами не сопровождается пролиферацией гладкого эндоплазматического ретикулума, но при этом существенно возрастает активность Р- 450, УДФГ-трансферазы, гидроксиолаз.

Некоторые индукторы способны специфично активировать отдельные изоформы Р-450. К числу таковых относятся, в частности, прегненолол-16 -карбонитрил (ПКН), активирующий 3А1 изоформу Р-450, этанол, индуцирующий 1А2 изоформу Р-450, клофибрат - 4А изоформу.

Поскольку ксенобиотики, как правило, вызывают индукцию более чем одной ферментативной системы (барбитураты, полигалогенированные бифенилы одновременно вызывают индукцию Р-450, УДФГТ, GST и др.), предсказать влияние индукторов на токсикокинетику и токсикодинамику ксенобиотика практически не возможно. Эффект может быть определен только экспериментально. Задача усложняется еще и тем, что индукция того или иного энзима, вызванная разными индукторами, не одинаково сказывается на скорости метаболизма разных ксенобиотиков (таблица 6).

Таблица 6. Влияние некоторых индукторов метаболизма на активность УДФглюкуронилтрансферазы печени крыс (при использовании -нафтола, морфина и хлорамфеникола в качестве субстратов)

Индукторы

Активность УДФ-ГТ (нмол/мин/мг белка)

-нафтол

морфин

хлорамфеникол

 

Контроль

75 +/- 15

7,9 +/- 0,6

0,36 +/- 0,1

Фенобарбитал (100 мг/кг/сут)

84 +/- 20

18,0 +/- 2,8

1,78 +/- 0,3

3-метилхолантрен (40 мг/кг)

212 +/- 49

9,9 +/- 1,7

0,39 +/- 0,1

Арохлор 1254 (80 мг/кг)

143 +/- 25

13,0 +/- 2,1

0,76 +/- 0,2

(K.W. Bock, 1977)

6.3.1.2. Механизмы индукции

Индукция предполагает синтез дополнительного количества того или иного энзима в органах и тканях de novo. Ингибиторы синтеза белка (пуромицин, этионин, циклогексимид), а также ингибиторы синтеза РНК (актиномицин Д) блокируют индукцию микросомальных энзимов. Поскольку блокаторы синтеза ДНК (гидроксимочевина) не эффективны, можно сделать вывод, что феномен индукции энзимов биотрансформации ксенобиотиков реализуется на уровне транскрипции генетической информации.

Механизм феномена полностью не изучен. Одна из первых гипотез была предложена S. Granick в 1966 году для объяснения индукторных свойств стероидов. Автор полагал, что индукция эндоплазматического ретикулума гепатоцитов, содержащего цитохромы, регулируется концентрацией в клетке свободного гема, высвобождающегося в ходе обменных процессов в эндоплазматическом ретикулуме. Гем взаимодействует с внутриядерным апорепрессором. При этом образуется репрессор, который в свою очередь угнетает геноператор. В тот момент, когда ген-оператор находится в неактивной форме, на соответствующем участке ДНК не осуществляется синтез мРНК, необходимой для синтеза энзиматических белков, входящих в структуру эндоплазматического ретикулума. При отсутствии свободного гема или в тех случаях, когда гем не может присоединиться к апорепрессору, происходит активация синтеза мРНК и выраженная пролиферация эндоплазматического ретикулума. Естественными ингибиторами образования репрессора и являются стероиды, активно взаимодействующие с апорепрессором. В соответствии с этой моделью около 300 ксенобиотиков (далеко не все структурные аналоги стероидов) способны избирательно взаимодействовать с апорепрессором и блокировать тем самым образование репрессора. Эти вещества проявляют свойства индукторов микросомальных ферментов. Кроме того, так как большинство индукторов являются, как и стероиды, жирорастворимыми веществами они активно захватываются мембранными структурами цитоплазмы гепатоцитов, вытесняя при этом из соответствующих сайтов связывания "депонированные" стероиды. Концентрация последних повышается в цитоплазме, а затем и в ядре клеток. Связывание с апорепрессором усиливается, активируется процесс синтеза энзимов метаболизма ксенобиотиков.

в соответствие с более поздними представлениями механизм действия стероидных гормонов, полициклических ароматических углеводородов, 2,3,7,8,-тетрахлордибензо-п-диоксина, состоит во взаимодействии с цитозольными рецепторными белками. Образующиеся комплексы мигрирует в ядро клетки, где вызывают дерепрессию регуляторных генов и, тем самым, активирует синтез того или иного энзима. В случае ТХДД такой рецепторный цитоплазматический протеин идентифицирован, по крайней мере, в гепатоцитах лини мышей, чувствительных к ароматическим углеводородам. Установлено, что синтез гидроксилазы ароматических улеводородов (aryl hydrocarbon hydroxylase) регулируется локусом единственного доминантного гена, Ah, и может быть усилен при введении ТХДД. Цитозольный белок-регулятор гена получил название Ah-рецепторный протеин.

Другие индукторы, такие как барбитураты, вероятно действуют с помощью иного механизма. Хотя известно, что в основе процесса также лежит индукция синтеза белка, до конца не выяснено каким образом клетка распознает индуктор и как осуществляется воздействие на процесс транскрипции. Индукторы класса фенобарбитала относятся к числу малоактивных соединений. Для реализации эффекта нужны дозы препаратов на несколько порядков превышающие эффективные дозы ТХДД. Рецепторный белок для фенобарбитала пока не идентифицирован.

Помимо усиления синтеза энзимов дополнительным механизмом индукции является стабилизация информационной РНК и белковых молекул в клетке.

6.3.1.3. Влияние индукторов на токсичность ксенобиотиков

Достаточно часто усиление метаболизма ксенобиотиков приводит к снижению их токсичности. Так, повторное введение фенобарбитала белым крысам самцам приводит к увеличению резистентности животных примерно в полтора раза к таким высоко токсичным ФОС, как зарин, зоман, ДФФ и др. Понижается чувствительность экспериментальных животных к цианидам. Вместе с тем токсичность других веществ, при этом, существенно возрастает. Например, усиливается гепаттоксическое действие алкалоида монокротолина и циклофосфамида, канцерогенная активность 2-нафтиламина. Вследствие индукции усиливается также токсичность четыреххлористого углерода, бромбензола, иприта и др.

Другим последствием индукции может быть изменение соотношения интенсивности метаболизма ксенобиотиков в разных органах и тканях, в результате чего основным органом биопревращения ксенобиотика у экспериментального животного, получавшего индукторы, становится иной орган, чем у интактных животных. Так, после введения крысам 3- метилхолантрена (индуктор) основным органом метаболизма 4-ипомеанола (токсичный дериват фурана) становятся не легкие (как в норме), а печень.

Индукторы из группы производных барбитуровой кислоты способны одновременно активировать синтез одних изоферментов (например, цитохромР-450 зависимых оксидаз) и угнетать активность других. В этой связи a priori трудно предсказать последствия влияния индукторов на токсичность ксенобиотиков.

У человека индукция микросомальных ферментов нередко становится следствием различных привычек (курение, прием алкоголя и т.д.), профессионального и экологического контакта с веществами (ПАУ, органические растворители, диоксины, галогенированные инсектициды и т.д.), длительного приема некоторых лекарств (барбитураты, антибиотики типа рифампицин и т.д.).

6.3.2. Угнетение активности энзимов

Многие вещества способны угнетать активность ферментов, катализирующих метаболизм ксенобиотиков.

Группа ингибиторов метаболизма включает:

-конкурентные ингибиторы ферментов (альтернативные субстраты). Например, этиловый спирт - ингибитор метаболизма метанола или этиленгликоля; никотинамид - угнетает N- деметилирование аминопирена и т.д.;

-неконкурентные ингибиторы. Это, как правило, алкилирующие агенты, угнетающие активность энзима, но не конкурирующие с субстратом. Например, метирапон является хорошо известным ингибитором монооксигеназных реакций биопревращения. К этой же группе относится вещество SKF-525 - известный ингибитор Р-450;

-"суицидные ингибиторы" - вещества, образующиеся в процессе метаболизма ксенобиотика при участии данного фермента и одновременно являющиеся его ингибиторами. Например, ингибиторами Р-450 такого рода являются дигидропиридины; метаболиты пиперонилбутоксида угнетают микросомальное окисление многих ксенобиотиков в печени, таких как альдрин, анилин, аминопирен, карбарил и др;

-реакционноспособные промежуточные метаболиты, ингибирующие активность энзимов нескольких типов в месте их образования: метаболиты четыреххлористого углерода, дихлорэтана и т.д.;

-ингибиторы синтеза кофакторов и простетических групп энзимов. К числу таких относятся, например, Со, блокирующий синтез гема, являющегося простетической группой цитохромР-450 зависимых оксидаз; вещества истощающие запасы глутатиона в клетках.

Ингибиторы ферментов метаболизма не нашли в настоящее время практического применения. Однако в условиях лаборатории для исследовательских целей некоторые из них используются достаточно часто (рисунок 16).

Рисунок 16. Некоторые ингибиторы метаболизма ксенобиотиков. В скобках указаны ингибируемые энзимы

Если ксенобиотик подвергается в организме детоксикации, угнетение его метаболизма приведет к повышению токсичности, если происходит биоактивация, токсичность вещества понижается. Например, дисульфирам (антабус), являясь ингибитором альдегиддегидрогеназы, вызывает резкое повышение содержания уксусного альдегида в крови и тканях человека принявшего этанол. Это сопровождается тошнотой, рвотой и другими симптомами, тягостно воспринимающимися пострадавшим. На этом эффекте основано практическое использование вещества для борьбы с алкоголизмом. Угнетение энзима необратимо и его активность восстанавливается в результате синтеза de novo. Идентичная ситуация складывается при отравлении грибами рода Coprinus. Через 3 - 6 часов после их приема развивается повышенная чувствительность к алкоголю, продолжающаяся до 3 суток. После приема алкоголя в течение 20 минут - 2 часов появляются тошнота, рвота, покраснение кожных покровов, резкая головная боль, тахикардия, снижение артериального давления. В тяжелых случаях возможна потеря сознания. Явления обусловлены тем, что в грибах содержится термостабильный токсин - протокоприн. В организме вещество превращается в коприн - мощный ингибитор альдегиддегидрогеназы.

Коканцерогенное действие некоторых соединений обусловлена их способностью угнетать процессы детоксикации канцерогенов. Так, пиперонилбутоксид (ингибитор Р-450) является коканцерогеном фреонов 112 и 113.

Наиболее простым методом выявления способности веществ влиять на метаболизм ксенобиотиков является опыт с определением продолжительности сна лабораторных животных, вызванного гексобарбиталом. Это вещество довольно быстро разрушается печеночными микросомальными энзимами и поэтому эффект может быть оценен в течение относительно короткого промежутка времени. Ингибиторы метаболизма, введенные до наркотического препарата, удлиняют продолжительность сна. Так, хлорамфеникол в дозах 5 - 200 мг/кг, при введении за 0,5 -1,0 ч до гексобарбитала дозо-зависимо увеличивает продолжительности сна мыши (в высоких дозах - десятикратно).

6.3.3. Двухфазный эффект: угнетение и индукция

Многие ингибиторы микросомальных энзимов одновременно вызывают и их индукцию. Ингибирование, как правило, процесс быстрый, состоящий в прямом взаимодействии ксенобиотика с энзимом. Индукция - пролонгированный во времени процесс. В этой связи нередко после действия вещества наблюдается период кратковременного снижения активности монооксигеназ, сменяющийся периодом относительно стойкого повышения их активности. Наиболее известным веществом, действующим подобным образом, является пиперонилбутоксид.

7. Активные метаболиты и их роль в инициации токсического процесса

Многие ткани являются мишенью для повреждающего действия продуктов метаболизма некоторых ксенобиотиков. Как правило, чем менее токсично вещество, то есть, чем большее его количество вызывает интоксикацию, тем выше вероятность того, что в основе инициации различных форм токсического процесса может лежать действие реактивных промежуточных продуктов метаболизма (рисунок 17).

+ Щелкните для загрузки увеличенной копии

(4,53кб, 560x228 GIF)

Рисунок 17. Роль метаболических превращений ксенобиотика в развитии различных форм токсического процесса

Некоторые вещества активируются уже в ходе однократного превращения, другие в результате многоэтапных превращений, локализующихся порой в разных органах и тканях. Одни метаболиты проявляют свое пагубное действие непосредственно в месте образования, другие способны мигрировать, производя эффект в других органах. Обычно рассматривают три модели механизмов, связывающих явление метаболизма ксенобиотиков и процессы формирования повреждения органов и систем.

Модель N1. Эта модель является наиболее простой (рисунок 18). Орган - мишень действия токсиканта содержит весь набор энзимов, необходимых для биоактивации ксенобиотика. В результате действия этих энзимов образуется реактивный метаболит, который и вызывает повреждение органа. Как правило, таким образом действуют чрезвычайно активные метаболиты, не способные к диффузии за пределы клеток, в которых они образовались (таблица 7).

Рисунок 18. Модель N1

Таблица 7. Классификация ксенобиотиков по способу их биотрансформации (модель N1)

Соединения

Орган-мишень

Энзимы

Метаболиты

Эффект

Ароматические амины:

мочевой

ПО*, NАТ*, СТ*,

диимины

канцерогенез

Бензидин

пузырь

Р-450

 

свободные радикалы

-нафтиламин

печень

 

 

 

 

 

 

 

Арилгидроксамовые кислоты:

печень

Р-450, СТ*

N,O-сульфэфиры

канцерогенез

Ацетаминофлюорен

 

 

 

 

 

 

Биспиридины:

легкие

ФПР*

 

свободные радикалы

повреждение органа

 

Паракват

 

Дикват

печень

 

 

 

 

 

 

 

 

 

 

 

Фураны:

легкие

Р-450

 

эпоксиды

повреждение органа

 

печень

 

3-метилфуран

 

почки

 

 

 

 

 

 

 

 

 

 

 

Галогеналканы:

легкие

Р-450

 

радикалы

повреждение органа

а) галотан,

печень

 

СCl4

почки

 

 

 

 

 

б) СНСl3

печень

Р-450

 

ацил-галогены

повреждение органа

трихлорэтан

почки

 

 

 

 

 

 

в) дихлорэтан

легкие

GST

 

ионы эписульфониума

канцерогенез

 

кишечник

 

дибромэтан

 

яички

 

 

 

 

 

 

 

 

 

 

 

Галогеналкены:

легкие

 

 

 

ацилгалогены

повреждение органа

Дихлорэтилен

печень

Р-450

 

альдегиды

 

канцерогенез

Трихлорэтилен

почки

 

 

 

эпоксиды

 

 

 

 

Галогенсодержащие

легкие

 

 

 

 

 

 

 

 

 

 

Ароматические соединения:

 

 

 

ареноксиды

 

Бромбензол

печень

Р-450

 

повреждение органа

 

хиноны

Хлорбензол

почки

 

 

 

 

 

 

 

 

 

ПГБФ

 

 

 

 

 

 

Гидразины:

печень

Р-450, ФМО

диазометан

канцерогенез

метил-радикал

Диметилгидразин

кишечник

 

 

 

ионы диметил-диазониума

 

 

 

 

 

 

 

Нитрозамины:

печень

Р-450

 

ионметилдиазониум

канцерогенез

желудок

 

Диметилнитрозамин

 

легкие

 

 

 

 

 

 

 

 

 

 

 

ПАУ:

легкие

Р-450

 

ареноксид

канцерогенез

 

кожа

 

Бенз(а)пирен

*

, ЭГ

*

хиноны

повреждение органа

молочная жлеза

ПО

 

Пирролины:

печень

Р-450

 

пирролы

канцерогенез

Монокроталин

 

 

 

 

 

 

 

Сульф-тионовые соединения:

печень

Р-450

 

S-оксиды

канцерогенез

Тиоацетамид

 

S,S-диоксиды

легкие

ФМО

 

повреждение органа

Сероуглерод

 

атомарная сера

 

 

 

 

 

Нитроароматические соединения:

легкие

ФПР

 

радикалы

повреждение органа

 

Нитрофурантион

печень

 

 

 

 

 

 

*ПО - пероксидаза

NАТ - амин-N-ацетилтрансфераза СТ - сульфотрансфераза ФПР - флавопротеинредуктаза ЭГ - эпоксигидраза

Модель N2. Орган мишень не в состоянии биотрансформировать исходный токсикант в реакционноспособный метаболит, но может участвовать в биоактивации промежуточных продуктов, образовавшихся в других органах (рисунок 19). Эта модель применима к веществам, первично метаболизируемым в печени. Однако обязательным этапом их метаболизма является превращение в других органах, например кишечнике и т.д. Органмишень содержит энзимы, отсутствующие в печени, например, энзимы катаболизма конъюгатов глутатиона (почки), пероксидазы (почки, лейкоциты, костный мозг), некоторые подтипы цитохромР-450. Первичные метаболиты - химически инертные вещества, вторичные - обладают высокой реакционной способностью, достаточной для того, что бы вызывать повреждение органа в котором они образуются (таблица 8).

+ Щелкните для загрузки увеличенной копии

(3,49кб, 514x241 GIF)

Рисунк 19. Модель N2

Таблица 8 Классификация ксенобиотиков по способу их биотрансформации (модель N2)

Соединения

Первичн.

 

токс.

Орган-мишень

 

Токсичный

Эффект

метаболит

 

 

(энзимы)

 

 

метаболит

 

 

 

 

 

 

Ароматические

фенол

гидрохиноны

клетки

костного

хиноны

повреждение

углеводороды:

катехолы

 

 

мозга (МП*)

 

клеток

Бензол

 

 

 

 

 

 

 

 

Галогеналканы:

 

 

 

*

*

*

тионацил-

повреждение

Гексхлорбутадиен

конъюгат глутатиона

 

почки (ГТП

, ДП

, Л )

галоиды тиокетоны

органа

Нитроароматические

динитробензиловый

 

печень

 

 

гидроксиламины

канцерогенез

соединения:

спирт

 

 

 

 

 

 

(Р-450, СТ)

 

 

S-эфиры

2,6-динитротолуол

глюкурониды

 

 

 

 

 

 

 

 

 

 

*ГТП - -глутамилтранспептидаза

ДП - дипептидаза

Л - -лиаза

МП - миелопероксидаза

Модель N3. Орган-мишень может вообще не участвовать в процессе биоактивации токсиканта, но обладает при этом высокой чувствительностью к образующемуся в других органах метаболиту (рисунок 20). Эта модель приложима к химическим соединениям, вызывающим повреждение органов и тканей либо вообще не участвующих, либо участвующих в минимальной степени, в биоактивации ксенобиотиков (таблица 9). Органами-мишенями могут быть и периферические нервные стволы, практически не содержащими энзимов метаболизма ксенобиотиков, и легкие, отличающиеся достаточно высокой метаболической активностью, и др. Общим между ними является то, что они не в состоянии метаболизировать конкретное химическое вещество, вызывающее их повреждение. Основой для развития токсического процесса являются: поступление большого количества метаболита с притекающей кровью, активный захват метаболитов, недостаточность механизмов детоксикации, высокая чувствительность клеток органа к метаболиту, недостаточность механизмов репарации повреждений. Установление такого механизма действия токсикантов требует проведения глубоких исследований.

Рисунок 20. Модель N3

Таблица 9. Классификация ксенобиотиков по способу их биотрансформации (модель N3)

Соединения

Орган

биоактивации

Метаболиты

Орган-мишень

Эффект

 

(энзимы)

 

 

 

 

 

Алканы:

печень (Р-450, АДГ*)

2,5-дикетоны

нервные стволы

повреждение

Гексан

 

 

 

 

 

органа

Ароматические амины:

печень (Р-450, ФМО,

N-глюкурониды

эпителий

мочевого

канцерогенез

-нафтиламин

УДФГТ)

 

 

пузыря

 

 

Гликоли:

печень (АДГ, АлДГ*)

оксалат

почечные канальцы

повреждение

Этиленгликоль

 

 

 

 

 

органа

Галогеналкены:

гепатоциты

эпоксид

эндотелий

сосудов

канцерогенез

Винилхлорид

(Р-450)

 

 

печени

 

 

Гидразины:

гепатоциты

 

эндотелий

сосудов

 

диазометан

канцерогенез

Диметилгидразин

(Р-450)

 

 

печени

 

 

N-нитрозамины:

гепатоциты

-гидрокси-N-

эндотелий

сосудов

канцерогенез

Диметилнитрозамин

(Р-450)

 

нитрозамины

печени

 

 

Пирролины:

печень (Р-450)

пирролы

эндотелий

сосудов

повреждение

Пирролизидиновые

легких

 

органа

алкалоиды

 

 

 

 

 

 

 

 

 

 

*АДГ - алкогольдегидрогеназа

ДлДГ – альдегиддегидрогеназа

ОГЛАВЛЕНИЕ/ T4 СТАТЬЯ

М а р т, 2 0 0 3 г.

С. А. КУЦЕНКО ОСНОВЫ ТОКСИКОЛОГИИ, Санкт-Петербург, 2002

ГЛАВА 4.5. ВЫДЕЛЕНИЕ КСЕНОБИОТИКОВ ИЗ ОРГАНИЗМА (ЭКСКРЕЦИЯ)

Биологические эффекты, вызываемые химическими веществами, как правило, ограничены во времени. Одной из основных причин этого является элиминация их из организма. Под

элиминацией понимают процесс, приводящий к снижению концентрации веществ в крови, органах и тканях. Элиминация осуществляется путем:

1.Экскреции - выведения вещества из организма в окружающую среду;

2.Биотрансформации - химических превращений молекул ксенобиотика, его метаболизма. Метаболиты ксенобиотика удаляются из организма путем экскреции.