Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2Учебное пособие по общему землеведению (рисунки).doc
Скачиваний:
215
Добавлен:
17.02.2016
Размер:
3.88 Mб
Скачать

12.3 Происхождение атмосферы. Происхождение и эволюция атмосферы

Состав атмосферы не всегда был таким, как сейчас. Предполагают, что первичная атмосфера состояла из водорода и гелия, которые были самыми распространенными газами в Космосе и входили в состав протопланетного газово-пылевого облака.

Результаты исследований М.И. Будыко с количественными оценками изменения массы кислорода и углекислого газа на протяжении жизни Земли дают основание считать, что историю вторичной атмосферы можно разделить на два этапа: бескислородной атмосферы и кислородной атмосферы – на рубеже примерно 2 млрд. лет тому назад.

Первый этап начался после завершения образования планеты, когда началось разделение первичного земного вещества на тяжелые (преимущественно железо) и относительно легкие (в основном кремний) элементы. Первые образовали земное ядро, вторые – мантию. Эта реакция сопровождалась выделением тепла, в результате чего стала происходить дегазация мантии – из нее стали выделяться различные газы. Сила тяготения Земли оказалась способной удержать их возле планеты, где они стали скапливаться и образовали атмосферу Земли. Состав этой начальной атмосферы существенно отличался от современного состава воздуха (табл. 1)

Таблица 1

Состав воздуха при образовании атмосферы Земли в сравнении с современным составом атмосферы (по в.А. Вронскому г.В. Войткевичу)

Газ

Его состав

Состав атмосферы Земли

при образовании

современный

Азот

N2

1,5

78

Кислород

O2

0

21

Озон

O3

-

10-5

Углекислый газ

CO2

98

0,03

Оксид углерода

CO

-

10-4

Водяной пар

H2O

0,4

0,1

Аргон

Ar

0,19

0,93

Кроме этих газов в атмосфере присутствовали метан, аммиак, водород и др.

Характерной чертой этого этапа было убывание углекислого газа и накопление азота, который к концу эпохи бескислородной атмосферы стал основным компонентом воздуха. Согласно исследованиям В.И. Бгатова тогда же появился в качестве примеси и эндогенный кислород, возникший при дегазации базальтовых лав. Кислород возникал и в результате диссоциации молекул воды в верхних слоях атмосферы под действием ультрафиолетовых лучей. Однако весь кислород уходил на окисление минералов земной коры, и его не хватало на накопление в атмосфере.

Более 2 млрд. лет назад появились фотосинтезирующие сине-зеленые водоросли, которые для синтеза органического вещества стали использовать световую энергию Солнца. В реакции фотосинтеза использовался углекислый газ, а выделяется свободный кислород. Вначале он расходовался на окисление железосодержащих элементов литосферы, но около 2 млрд. лет назад этот процесс завершился, и свободный кислород начал накапливаться в атмосфере. Начался второй этап развития атмосферы – кислородный.

Сначала рост содержания кислорода в атмосфере был медленным: около 1 млрд. лет назад оно достигло 1% от современного (точка Пастера), но этого оказалось достаточным для появления вторичных гетеротрофных организмов (животных), потребляющих кислород для дыхания. С появлением растительного покрова на континентах во второй половине палеозоя прирост кислорода в атмосфере составляло около 10 % от современного, а уже в карбоне кислорода было столько же, сколько и сейчас. Фотосинтетический кислород вызвал большие изменения и в атмосфере, и в живых организмах планеты. Содержание углекислого газа в процессе эволюции атмосферы существенно снизилось, так как значительная его часть вошла в состав углей и карбонатов.

На водород и гелий, широко распространенный во Вселенной, в атмосфере Земли приходится соответственно 0,00005 и 0,0005%. Земная атмосфера, т.о., является геохимической аномалией в космосе. Ее исключительный состав формировался параллельно с развитием Земли в специфических, присущих только ей космических условиях: гравитационное поле, удерживающее большую массу воздуха, магнитное поле, предохраняющее ее от солнечного ветра, и вращение планеты, обеспечивающее благоприятный тепловой режим. Формирование атмосферы шло параллельно с формированием гидросферы и рассмотрено выше.

Первичная гелиево-водородная атмосфера была утеряна при разогреве планеты. В начале геологической истории Земли, когда происходили интенсивные вулканические и горообразовательные процессы, атмосфера была насыщена аммиаком, водяными парами и углекислым газом. Эта оболочка имела температуру около 100С. При понижении температуры произошло разделение на гидросферу и атмосферу. В этой вторичной углекислой атмосфере зародилась жизнь. С прогрессивным развитием живого вещества развивалась и атмосфера. Когда биосфера достигла стадии зеленых растений, и они вышли из воды на сушу, начался процесс фотосинтеза, что привело к формированию современной кислородной атмосферы.

12.4 Взаимодействие атмосферы с другими оболочками. Атмосфера развивается со всей природой земной поверхности – с ГО. Растения и животные используют атмосферу для фотосинтеза и дыхания. Магнитосфера, ионосфера и озоновый экран изолируют биосферу от космоса. Верхняя граница ГО – биосферы лежит на высотах в 20-25 км. Атмосферные газы вверху покидают Землю, а недра Земли пополняют воздушную оболочку, поставляя до 1 млн. т. газов в год. Атмосфера задерживает инфракрасное излучение Земли, создавая благоприятный тепловой режим. В атмосфере переносится влага, образуются облака и осадки – формируются погодно-климатические условия. Она предохраняет Землю от падающих на нее метеоритов.

12.5 Солнечная энергия, солнечная радиация – лучистая энергия Солнца. Солнце излучает электромагнитные волны и корпускулярный поток. Электромагнитное излучение - особый вид материи, отличный от вещества, распространяется со скоростью 300 000 км/сек. (скорость света). Корпускулярное излучение (солнечный ветер) – поток заряженных частиц: протонов, электронов и др., распространяется со скоростями 400-2000 км/сек. Корпускулярный поток, достигая З., возмущает ее магнитное поле, вызывая ряд явлений в атмосфере (полярные сияния, магнитные бури и др.).

Электромагнитное излучение представляет собой тепловую (инфракрасную, 47%), световую (46%) и ультрафиолетовую (7%) радиацию, в зависимости от длины волн. Все три вида энергии играют большую роль в ГО. Ультрафиолетовое излучение в основном задерживается озоновым экраном и это хорошо, т.к. жесткое ультрафиолетовое излучение губительно действует на живые организмы, но то небольшое количество его, достигающее поверхности Земли, оказывает дезинфицирующее влияние. Под ультрафиолетовыми лучами загорает кожа человека.

Влияние света общеизвестно. Не только потому, что свет позволяет нам видеть окружающий мир, но при солнечном освещении происходят процессы фотосинтеза, о чем мы еще будем говорить позже. Наконец, тепловой поток определяет температурные условия ГО.

Единицей измерения солнечной энергии является солнечная постоянная(I0)2 кал/см2 /мин. (столько тепла получает 1 кв. см абсолютно черной поверхности за минуту при перпендикулярном падении лучей). При перпендикулярном падении лучей земная поверхность получает максимум солнечной энергии, а чем меньше угол падения, тем меньше поступает ее на подстилающую поверхность. Количество приходящей энергии на ту или иную широту рассчитывается по формуле: I1=I0хSin ho, где hoвысота Солнца над горизонтом. Атмосфера ослабляет и перераспределяет солнечный поток при различиях в усвоении его земной поверхностью.

Если к верхней границе атмосфере приходит 1,36 х 1024 кал/год, то до земной поверхности доходит на 25% меньше, вследствие того, что при прохождении через атмосферу происходит ослабление потока солнечной энергии. Эта энергия во взаимодействии с силой тяжести обуславливает циркуляцию атмосферы и гидросферы. Приводя в действие разнообразные процессы, протекающие в ГО, солнечная радиация почти полностью превращается в тепло и в виде теплового потока возвращается в Космос.

Изменение солнечной радиации в атмосфере. При прохождении лучистой энергии через атмосферу происходит ее ослабление, вызванное поглощением и рассеиванием энергии. В области видимой части спектра преобладает рассеяние, а в ультрафиолетовой и инфракрасной областях атмосфера является в основном средой поглощения.

Благодаря рассеиванию получается тот дневной свет, который освещает предметы, если на них не попадают непосредственно солнечные лучи. Рассеивание обуславливает и голубой цвет неба. В больших городах, в пустынных областях, где высока запыленность воздуха, рассевание ослабляет силу радиации на 30-45%.

Основные газы, входящие в состав воздуха, поглощают лучистую энергию мало, зато большой поглотительной способностью отличаются: водяной пар (инфракрасные лучи), озон (ультрафиолетовые лучи), углекислый газ и пыль (инфракрасные лучи).

Величина ослабления солнечной радиации зависит от коэффициента прозрачности (к.п.), который показывает, какая доля радиации доходит до земной поверхности.

Если бы атмосфера состояла из газов, то к.п. =0,9, т.е. она пропускала бы 90% идущей к Земле радиации. Но атмосфера содержит примеси, в т.ч. облака и фактор мутности снижает прозрачность до 0,7-0,8 (зависит от погоды). В целом атмосфера поглощает и рассеивает около 25% идущей к земной поверхности лучистой энергии, причем ослабление потока радиации для различных широт Земли неодинаково. Различия эти зависят от угла падения лучей. При зенитальном положении Солнца лучи пересекают атмосферу кратчайшим путем, с уменьшением угла падения путь лучей удлиняется, и ослабление солнечной радиации становится более значительным.

Если угол падения лучей равен:

а) 90, степень ослабления 25%;

б) 30, степень ослабления 44%;

в) 10, степень ослабления 80%;

г) 0, степень ослабления 100%.

Значительная часть солнечной радиации, достигающая земной поверхности в виде параллельного пучка лучей, идущих от Солнца, называется прямой солнечной радиацией.

Радиация, приходящая к земной поверхности в виде миллионов лучиков от всех точек небесного свода вследствие рассеяния, - рассеянная солнечная радиация.

Рассеянная радиация летом в средних широтах составляет 40%, а зимой – 70% общего ее поступления, в тропических широтах она составляет около 30%, а в полярных – 70% общего потока лучистой энергии.

Прямая солнечная радиация и рассеянная в сумме дают так называемую суммарную радиацию. Для практических целей чаще всего требуются данные о полной сумме энергии, приходящей к земной поверхности, т.е. сумме суммарной радиации за какой-либо промежуток времени (сутки, месяц, год) на единицу площади, поэтому карты сумм суммарной радиации широко используются.

Максимум суммарной радиации приходится на тропические широты (180-200 ккал/см2 в год), что связанно с малой облачностью, обуславливающей большую долю прямой радиации. Экваториальные широты получают меньше солнечной энергии, около 100-140 ккал/см2 в год, в силу высокой облачности, несмотря на более высокий угол высоты Солнца над горизонтом; умеренные широты (55-65 с.ш.) получает 80 ккал/см2 за год, а на широтах 70-80 с.ш. – получает 60 ккал/см2/год.

Приходящая к земной поверхности солнечная радиация частично поглощается (поглощенная радиация), частично отражается (отраженная радиация) в атмосферу и в межпланетное пространство. Отношение величины солнечной радиации, отраженной данной поверхностью, к величине потока лучистой энергии, падающей на эту поверхность, называется альбедо.

Альбедо выражается в процентах и характеризует отражательную способность данного участка поверхности. Отражательная способность зависит от характера поверхности (цвета, шероховатости) и от величины угла падения лучей. Абсолютно черное тело усваивает всю радиацию, а зеркальная поверхность отражает 100% лучей и не нагревается. Свежевыпавший снег отражает 80-90% радиации, чернозем – 5-18%, светлый песок 35-40%, лес – 10-20%, верхняя поверхность облаков – 50-60%.

С уменьшением высоты Солнца альбедо увеличивается, следовательно, в его суточном ходе наименьшее значение наблюдается в околополуденные часы. Годовой ход альбедо определяется изменением характера подстилающей поверхности по сезонам года. В умеренных и северных широтах обычно отмечается увеличение альбедо от теплой половины года к холодной.

Высокое альбедо снегов в Арктике и Антарктике обуславливает низкие летние температуры, несмотря на значительную величину солнечной инсоляции в летние месяцы при круглосуточно незаходящем Солнце. В основном солнечная радиация отражается облаками.

Альбедо влияет на температуры переходных периодов в умеренных широтах: в сентябре и марте Солнце находится на одной высоте, но мартовские лучи отражаются (и идут на таяние снега), поэтому март холоднее сентября.

Планетарное альбедо 35-%.

Поглощенная радиация затрачивается на испарение воды и нагревание подстилающей поверхности.

Земля, получая солнечную энергию, сама становится источником излучения тепла в мировое пространство. Энергия, излучаемая земной поверхностью называется земной радиацией.

Изучение земной поверхности происходит днем и ночью. Интенсивность излучения тем больше, чем выше температура излучаемого тепла в соответствии с законом Стефана-Больцмана: всякое тело теряет лучеиспусканием количество тепла пропорциональное 4ой степени абсолютной температуры: (Ет=Т4кал/см2мин), где – постоянная Стефана-Больцмана.

Земное излучение выражается в тех же единицах, что и солнечное.

Каждый объем воздуха, как и атмосфера в целом, имея температуру, отличную от температуры абсолютного нуля, также излучает тепловую радиацию, это – атмосферная радиация, которая направлена в разные стороны. Часть ее, направленная к земной поверхности – встречное излучение.

Разность собственного излучения подстилающей поверхности и встречного излучения называют эффективным излучением земной поверхности (Е25-Еа).

Эффективное излучение зависит от температуры излучающей поверхности и воздуха, от влажности и стратификации приземного слоя атмосферы.

В общем, земная поверхность в средних широтах теряет эффективным излучением примерно половину того количества тепла, которое она получает от поглощенной радиации.

Эффективное излучение – фактические потери тепла излучением. Особенно велики эти потери в ясные ночи - ночное выхолаживание. Водные пары задерживают тепло. В горах эффективное излучение больше, чем на равнинах, его снижает растительный покров. Пустыни, арктические широты – окна потерь тепла излучением.

Поглощая земное излучение и посылая встречное к земной поверхности, атмосфера тем самым уменьшает охлаждение последней в ночное время. Днем же она мало препятствует нагреванию земной поверхности земной радиацией. Это влияние на тепловой режим земной поверхности носит название тепличного (оранжерейного) эффекта, и земная поверхность имеет среднюю температуру +17,3С вместо – 22С.

Длинноволновое излучение земной поверхности и атмосферы, уходящее в космос, называют уходящей радиацией (65%, из них земная поверхность теряет 10%, атмосфера 55%). Вместе с отраженной (35%) эта уходящая радиация компенсирует приток солнечной радиации к Земле.

Таким образом, Земля вместе с атмосферой теряет столько же радиации, сколько получает, т.е. находится в состоянии лучистого (радиационного) равновесия.

В результате перераспределения тепла и холода преимущественно воздушными и водными течениями получаем значительное смягчение контрастов температур между экватором и полюсами: без влияния атмосферы и гидросферы на экваторе была бы среднегодовая температура +390С (фактически +25,4), на полюсах -440С (фактически на северном полюсе -230, на южном -330).

12.6 Радиационный баланс (остаточная радиация) земной поверхности – это разность между приходом (суммарная радиация и встречное излучение) и расходом (альбедо и земное излучение) тепла.

R=Q (прямая) +D (рассеянная) +E (встречная) =C (отраженная)-U (земная)

Радиационный баланс (R) может быть положительным и отрицательным. Ночью везде отрицателен, переходит от ночных отрицательных значений к дневным положительным после восхода Солнца (когда угол падения лучей не превышает 10-15), от положительных к отрицательным – перед заходом Солнца при такой же высоте над горизонтом.

Днем R растет с увеличением высоты Солнца и убывает с уменьшением ее. В ночные часы, когда суммарная радиация отсутствует, R равен эффективному излучению и потому мало меняется в течение ночи, если облачность не меняется.

Распределение R зонально, т.к. зональна суммарная радиация. Эффективное излучение распределяется более равномерно.

R земной поверхности за год положителен для всех мест Земли, кроме ледяных плато Гренландии и Антарктиды, т.е. годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не означает, что земная поверхность год от года становится теплее. Дело в том, что превышение поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух и почвогрунт путем теплопроводности и при фазовых превращениях воды (при испарении - конденсации).

Т.о., хотя для земной поверхности не существует равновесия в получении и отдаче радиации, но существует тепловое равновесие, что выражается формулой теплового баланса: P=P+B+LE, где P - турбулентный поток тепла между земной поверхностью и атмосферой, B – теплообмен между Землей и нижележащими слоями почвы и воды, L – удельная теплота парообразования, E – количество испарившейся влаги за год. Приток тепла к земной поверхности радиационным путем уравновешивается его отдаче другими способами.

R на широтах 60северной и южной широты составляет 20-30 ккал/см2, откуда к более высоким широтам уменьшается до –5,-10 ккал/см2 на материке Антарктиды. К низким широтам возрастает: между 40северной широты 40южной широты годовые величины р.б. 60 ккал/см2, а между 20северной и южной широтами 100 ккал/см2. На океанах R больше, чем на суше в тех же широтах, т.к. океаны аккумулируют много тепла, а при большой теплоемкости вода нагревается до меньших значений, чем суша.

12.7 Температура воздуха. Воздух нагревается и охлаждается от поверхности суши и водоемов. Будучи плохим проводником тепла, он нагревается только в нижнем слое, непосредственно касающемся земной поверхности. Основным же путем передачи тепла вверх служит турбулентное перемешивание. Благодаря этому к нагретой поверхности подходят все новые и новые массы воздуха, нагреваются и поднимаются.

Так как источник тепла для воздуха – земная поверхность, то очевидно, что с высотой температура его убывает, амплитуда колебаний становится меньше, максимум и минимум в суточном ходе наступают позднее, чем на почве. Высота измерения температуры воздуха едина для всех стран – 2 м. Для специальных целей температура измеряется и на других высотах.

Другой источник нагревания и охлаждения воздуха – адиабатические процессы, когда температура воздушной массы повышается или понижается без притока тепла извне. При опускании воздуха из верхних слоев тропосферы в нижние газы уплотняются, и механическая энергия сжатия переходит в тепловую. Температура при этом повышается на 1С на 100 м высоты.

Охлаждение воздуха связанно с адиабатическим поднятием, при котором воздух поднимается и расширяется. Тепловая энергия и в этом случае превращается в кинетическую. На каждые 100 м подъема сухой воздух охлаждается на 10С. Если адиабатические превращения происходят в сухом воздухе, процессы называют сухоадиабатическими. Но воздух обычно содержит водяные пары. Охлаждение влажного воздуха при поднятии сопровождается конденсацией влаги. Выделяющаяся при этом теплота уменьшает величину охлаждения в среднем до 0,6С на 100 м высоты (влажноадиабатический процесс). При подъеме воздуха преобладают влажноадиабатические процессы, при опускании – сухоадиабатические.

Другой способ охлаждения воздуха – непосредственная потеря тепла излучением. Это происходит в Арктике и Антарктиде, в пустынях по ночам, в умеренных широтах при безоблачном небе зимой и в ясные ночи летом.

Важным источником тепла для воздуха служит теплота конденсации, которая выделяется в атмосферу.

12.8 Тепловые пояса. Тропики и полярные круги, ограничивающие пояса освещенности, нельзя считать границами тепловых (температурных) поясов. На распределение температуры, кроме фигуры и положения Земли, сказывается влияние ряда факторов: распределение суши и воды, теплые и холодные морские и воздушные течения. Поэтому за границы тепловых поясов принимают изотермы. Существует семь тепловых поясов:

  • жаркий расположен между годовыми изотермами 20С северного и южного полушарий;

  • два умеренных ограничены со стороны экватора годовой изотермой 20С, со стороны полюсов изотермой 10С самого теплого месяца. С этими изотермами совпадает граница распределения древесной растительности;

  • два холодных находятся между изотермами 10С и 0С самого теплого месяца;

  • два пояса мороза расположены у полюсов и ограничены изотермой 0С самого теплого месяца. В северном полушарии – это Гренландия и пространство Северного Ледовитого океана, в южном – область к югу от параллели 60 ю. ш.

Термические условия поясов нарушают горные страны. Вследствие уменьшения температуры с высотой в горах прослеживается вертикальная температурная и климатическая поясность.

Для определения температуры воздуха используют термометры (ртутные, спиртовые и др.), аспирационные психрометры, термографы.