Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы на экзамен

.pdf
Скачиваний:
74
Добавлен:
06.03.2016
Размер:
3.6 Mб
Скачать

Источники. Значительное количество этого витамина содержится в дрожжах, печени, почках, мясе и других продуктах животного происхождения. Этот витамин в достаточной степени синтезируется кишечной микрофлорой.

Суточная потребность в фолиевой кислоте колеблется от 0,05-0,4мг; однако, вследствие плохой всасываемости этого витамина рекомендуемая суточная доза — 400 мкг.

Активация. Активная форма фолиевой кислоты – ТГФК. Она образуется в печени при восстановлении фолиевой кислоты с участием фолатредуктазы и дигидрофолатредуктазы, коферментом которых служит НАДФН2.

 

 

 

 

 

OH

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2НАДФН2 2НАДФ

 

 

N

H H

H

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

H

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Фолиевая кислота

 

N

 

 

 

C

 

C

 

N

 

 

 

 

 

 

 

C

 

N

 

C

 

C

 

C

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2N

N

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

Биологическая роль. ТГФК принимает от АК одноуглеродные фрагменты: серин и глицин дают метиленовый фрагмент (-СН2-), гистидин – формимино- и формильный фрагменты.

В составе ТГФК одноуглеродные фрагменты могут подвергаться взаимопревращениям: метиленовая группа превращаться в метенильную (-СН=), формильную (-НС=О), метильную (-СН3) и формиминогруппу (-CH=NH).

 

 

 

 

 

 

 

 

 

 

 

 

Сер Гли

 

 

 

 

 

 

 

 

 

 

H2

 

 

 

 

 

НАДН

НАД+

 

 

 

 

 

 

 

 

 

 

 

H

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

2

 

 

 

 

 

 

 

 

CH3

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

N

 

N

 

R

 

 

 

 

 

 

 

R

 

 

N

 

N

 

 

R

 

 

 

 

 

 

 

R1

 

 

N

 

 

N

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

5

 

 

 

 

 

 

 

 

 

5

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ТГФК

 

 

 

 

 

 

 

 

 

 

 

 

N5N10-метилен-ТГФК

 

 

 

 

 

N5-метил-ТГФК

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

НАДФ+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HN

 

 

 

 

 

 

 

 

 

NH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

НАДФН2

Н+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

Н2О

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

N

 

 

N

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

N

 

 

N

 

R2

 

 

 

 

 

 

 

 

 

 

R

 

 

N

 

N

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

10

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

2

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

10

 

 

 

N5-формимино-ТГФК

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N5N10-метеленил-ТГФК

 

 

 

 

N10-формил-ТГФК

Затем ТГФК отдает одноуглеродные фрагменты на:

синтез пуриновых оснований

синтез тимидиловой кислоты

регенерацию метионина

превращение дУМФ в дТМФ;

превращение глицина в серина и т.д.

Нарушение обмена. Гиповитаминоз фолиевой кислоты возникает редко, его вызывает использование сульфаниламидных препаратов. Сульфаниламиды — структурные аналоги парааминобензойной кислоты, они ингибируют синтез фолиевой кислоты у микроорганизмов, вызывая их гибель. Некоторые производные птеридина (аминоптерин и метотрексат) тормозят рост почти всех организмов, нуждающихся в фолиевой кислоте, их используют для подавления опухолевого роста у онкологических больных.

Гиповитаминоз фолиевой кислоты приводит к:

261

1.мегалобластической (макроцитарной) анемии. Она характеризуется уменьшением количества эритроцитов, снижением содержания в них гемоглобина, что вызывает увеличение размера эритроцитов. Причина — нарушение синтеза ДНК и РНК из-за недостатка тимидиловой кислоты и пуриновых нуклеотидов.

2.лейкопении;

3.задержке роста.

4.нарушению регенерации эпителия, особенно в ЖКТ (связано с недостатком нуклеотидов для синтеза ДНК в постоянно делящихся клетках слизистой оболочки).

ВИТАМИН В12 (КОБАЛАМИН)

Структура. Витамин В12 — единственный витамин, содержащий в своём составе металл кобальт.

Физико-химические свойства.

Источники. Витамин В12 синтезируют только микроорганизмы: бактерии, актиномицеты и сине-зелёные водоросли. Из животных тканей наиболее богаты витамином В12 печень и почки.

Суточная потребность в витамине В12 крайне мала и составляет всего 0,001-0,002мг.

Активация. Из витамина В12 образуются 2 кофермента: метилкобаламин в цитоплазме и дезоксиаденозилкобаламин в митохондриях.

Биологическая роль. Метилкобаламин участвует: в образовании метионина из гомоцистеина и в превращениях одноуглеродных фрагментов в составе ТГФК, необходимых для синтеза нуклеотидов.

Дезоксиаденозилкобаламин участвует: в метаболизме ЖК с нечётным числом углеродных атомов и АК с разветвлённой углеводородной цепью.

Нарушение обмена. Гиповитаминоз возникает при нарушении всасывании В12 из-за дефицита фактора Касла. Фактор Касла - гликопротеин с молекулярной массой 93000Да, который синтезируется обкладочными клетками желудка. В ЖКТ фактор Касла соединяется с витамином B12 при участии Ca2+, защищает его от разрушения и обеспечивает всасывание. Дефицит фактора Касла возникает при пониженной кислотности желудочного сока (может быть результатом повреждения слизистой оболочки желудка), после тотального удаления желудка при хирургических операциях.

Гиповитаминоз В12 сопровождается:

1.макроцитарной (мегалобластической) анемией: снижение числа эритроцитов, гемоглобина, увеличение размера эритроцитов. Причина — нарушение синтеза нуклеиновых кислот в быстроделящихся клетках кроветворной системы.

2.расстройствами деятельности нервной системы. При катаболизме жирных кислот с нечетным количеством атомов С и разветвленных АК из-за дефицита В12 накапливается нейротоксичная метилмалоновая кислота.

262

87.Витамин С: участие в метаболических процессах, биохимические механизмы проявления гиповитаминозов

ВИТАМИН С (АСКОРБИНОВАЯ КИСЛОТА)

Структура. Аскорбиновая кислота — лактон кислоты, близкой по структуре к глюкозе. Существует в двух формах: восстановленной (АК) и окисленной (дегидроаскорбиновой кислотой, ДАК), которые обратимо переходят друг в друга в окислительно-восстановительных реакциях.

CH2OH

CHOH

O

O

H OH OH

 

 

 

 

CH2OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 2H

 

CHOH

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+2H

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

Аскорбиновая к-та

Дегидроаскорбиновая к-та

Аскорбиновая кислота может окисляться кислородом воздуха, пероксидом и другими окислителями. ДАК легко восстанавливается цистеином, глутатионом, сероводородом.

Физико-химические свойства. Белые кристаллы, растворимые в воде. В слабощелочной среде происходят разрушение лактонового кольца и потеря биологической активности. При кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается.

Источники витамина С — свежие фрукты, овощи, зелень.

Продукт

Содержание

Продукт

Содержание

витамина, мг/100г

витамина, мг/100г

 

 

 

 

 

 

Плоды шиповника

2400

Яблоки

30

 

 

 

 

Облепиха

450

Картофель свежий

25

 

 

 

 

Смородина чёрная

300

Томаты

20

 

 

 

 

Лимоны

40

Молоко

2,0

 

 

 

 

Апельсины

30

Мясо

0,9

 

 

 

 

Суточная потребность человека в витамине С составляет 50—75мг.

Биологические функции. АК вместе с ДАК образует в клетках окислительновосстановительную пару с редокс-потенциалом +0,139 В. Благодаря этой способности аскорбиновая кислота участвует:

1.в реакциях гидроксилирования Про и Лиз при синтезе коллагена;

2.в реакциях гидроксилирования дофамина в норадреналин;

3.в синтезе стероидных гормонов в коре надпочечников;

4.в восстановлении Fe3+ в Fe2+ в кишечнике, что необходимо для всасывания железа;

5.в освобождение железа из ферритина;

6.в превращении фолата в коферментные формы;

Аскорбиновая кислота является природным антиоксидантом, она подавляет реакции СРО двумя механизмами:

1.восстанавливает окисленную форму витамина Е, поддерживая в мембране концентрацию активной формы восстановленного витамина Е.

263

2. инактивирует активные формы кислорода О2, Н2О2, НОв водной фазе.

Нарушение обмена. Недостаточность аскорбиновой кислоты приводит к развитию цинги (скорбут). Цингой болеют только человек, приматы и морские свинки.

Главные проявления цинги - нарушение образования коллагена в соединительной ткани, что проявляется разрыхлением дёсен, расшатыванием зубов, нарушением целостности капилляров и подкожными кровоизлияниями. Возникают отёки, боль в суставах, анемия. Причина анемии связана с нарушением обмена железа и фолиевой кислоты.

88.Витаминыантиоксиданты: Е, А, участие в метаболических процессах, биохимические механизмы проявления гиповитаминозов

ВИТАМИН Е (ТОКОФЕРОЛЫ)

Структура. Термин ''витамин E'' включает 8 форм метильных производных токола: α, β, γ и дельта токоферолы и α, β, γ и дельта токотриенолы. Наибольшую биологическую активность проявляет α-токоферол:

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H C

 

 

 

 

O

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

H2

 

H

 

 

 

 

 

 

H2C

 

CH

 

CH2

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

CH3 а-Токоферол

Физико-химические свойства. Токоферолы представляют собой маслянистую жидкость, хорошо растворимую в органических растворителях.

Источники витамина Е для человека — растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.

Суточная потребность взрослого человека в витамине Е примерно 15 мг. В течение беременности необходимо увеличение потребления витамина E.

Метаболизм.

1.Все формы витамина E связываются энтероцитами и попадают в кровообращение с хиломикронами.

2.Витамин Е достигает печени, где специфический протеин (α-TTP - токоферолтранспортный протеин) селективно выделяет α-токоферол из всех поступающих токоферолов и включает его в ЛПОНП. Другие формы выделяются с желчью и мочой в виде карбоксиэтил гидрорксихроманов. Концентрация α-токоферола в ЛПОНП не может быть увеличена более чем в 2-3 раза т.к. процесс абсорбции контролируется.

3.альфа-токоферол инактивируется в печени превращением в токофероновую кислоту и токоферонолактон. Токофероновая кислота и токоферонолактон затем конъюгируют с

глюкуроновой и серной кислотой и выделяются с мочой как глюкурониды и сульфаты.

Биологическая роль

264

Токоферол является биологическим антиоксидантом, входит в состав неферментативной антиоксидантной системы организма

 

 

 

 

 

 

H2O

 

 

OH*

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

*RCOOH

RCOOH

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

CH3

 

 

 

H C

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

H3C

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дегидроаскорбат

аскорбат

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а-Токоферол

 

 

 

 

 

 

 

 

 

 

а-Токоферол

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Нарушение обмена.

Гиповитаминоз Е. Мало изучен. Из-за диетических ограничений он наблюдается только у недоношенных новорожденных в виде гемолитической анемии и ретинопатии.

У взрослых гиповитаминоз Е возникает из-за генетического дефицита аполипопротеина B (apo B) или α-токоферол транспортного протеина (α-TTP).

Симптомы прежде всего неврологические (из-за демиелинизация аксонов) и включают потерю глубоких сухожильных рефлексов, мозжечковую атаксию, дизартрию и олигофрению, нарушения проприоцептивной чувствительности. Кроме того, может происходить скелетная миопатия и пигментный ретинит, развитие гемолитической анемии, креатинурия, отложения сфинголипидов в мышцах.

ВИТАМИН А (РЕТИНОЛ)

Структура. Витамин А представлен 3 веществами: ретинолом (циклический, ненасыщенный, одноатомный спирт), ретиналем и ретиноевой кислотой.

Физико-химические свойства.

Источники: Витамин А содержится только в животных продуктах: печени крупного рогатого скота и свиней, яичном желтке, молочных продуктах; особенно богат этим витамином рыбий жир.

Каратиноиды (провитамин А) содержаться в растительных продуктах: моркови, красном перце, зеленом салате, помидорах, плодах рябины, шиповнике.

Суточная потребность. Активность витамина А в пищевых продуктах выражается в международных единицах МЕ. 1 МЕ витамина А эквивалентна 0,0003мг ретинола или 0,0006мг β- каротина. Суточная потребность взрослого человека в витамине А составляет от 1 (3300 МЕ) до 2,5мг ретинола или от 2 до 5мг β-каротинов.

Активация. В слизистой оболочке кишечника и печени каратиноиды под действием каратиндиоксигеназы превращаются в ретинол, который потом окисляется в ретиналь и ретиноевую кислоту.

Действие

Витамин А повышает иммунитет множеством различных способов, что увеличивает сопротивляемость организма к инфекциям. Удовлетворение потребностей населения всего мира в витамине А могло бы ежегодно спасать от 1,2 до 2,5 миллиона жизней. Количество смертных

265

случаев от заболеваний дыхательных путей сократилось бы на 70%; число смертей от болезней, связанных с диареей, упало бы на 39%.

Витамин А - антиоксидант, способствует инактивации свободных радикалов. Он необходим для предотвращения сердечно-сосудистых и других дегенеративных заболеваний.

Витамин А может впитываться в ткани кожи и стимулировать выделение секрета (слизи), предотвращающего рубцевание. Он необходим для баланса глюкозы в крови.

Нарушение обмена витамина А.

Гиповитаминоз А. Ранний признак — нарушение сумеречного зрения: гемералопия или «ку-

риная» слепота.

Дефицит витамина А повышает заболеваемость простудными болезнями, вызывает появление морщин, угрей, сухость и шелушение кожи, ломкость волос и ногтей. Гиповитаминоз А приводит к кератозу эпителиальных клеток всех органов и, как следствие этого, избыточному ороговению кожи (особенно в области суставов), поражению эпителия ЖКТ, мочеполовой системы и дыхательного аппарата.

У детей при авитаминозе А наблюдается остановка роста костей. Прекращение роста костей черепа приводит к повреждению тканей ЦНС, а также к повышению давления спинномозговой жидкости

89.Буферные системы плазмы крови: гидрокарбонатная, фосфатная, белковая Гемоглобиновая буферная система эритроцитов, связь с гидрокарбонатной системой плазмы и эритроцита. Механизмы участия карбоангидразы в регуляции КОС.

Буфер – это система, состоящая из слабой кислоты и ее соли с сильным основанием (сопряженная кислотно-основная пара).

Принцип работы буферной системы состоит в том, что она связывает Н+ при их избытке и выделяет Н+ при их недостатке: Н+ + А- ↔ АН. Таким образом, буферная система стремиться противостоять любым изменениям рН, при этом один из компонентов буферной системы расходуется и требует восстановления.

Бикарбонатный (гидрокарбонатный) буфер

Состоит из Н2СО3 и NaНСО3 в соотношении 1/20, локализуется в основном в межклеточной жидкости. В сыворотке крови при рСО2 = 40 мм.рт.ст., концентрации Na+ 150 ммоль/л он поддерживает рН=7,4. Работа бикарбонатного буфера обеспечивается ферментом карбоангидразой и белком полосы 3 эритроцитов и почек.

Бикарбонатный буфер является одним из самых важных буферов организма, что связано с его особенностями:

1.Несмотря на низкую емкость – 10%, бикарбонатный буфер очень чувствителен, он связывает до 40% всех «лишних» Н+;

2.Бикарбонатный буфер интегрирует работу основных буферных систем и физиологических механизмов регуляции КОС.

Всвязи с этим, бикарбонатный буфер является индикатором КОС, определение его

компонентов – основа для диагностики нарушения КОС.

266

Фосфатный буфер

Состоит из кислого NaН2РО4 и основного Na2НРО4 фосфатов, локализуется в основном в клеточной жидкости (фосфатов в клетке 14%, в межклеточной жидкости 1%). Соотношение кислого и основного фосфатов в плазме крови составляет ¼, в моче - 25/1.

Фосфатный буфер обеспечивает регуляцию КОС внутри клетки, регенерацию бикарбонатного буфера в межклеточной жидкости и выведение Н+ с мочой.

Белковый буфер

Наличие у белков амино и карбоксильных групп придает им амфотерные свойства – они проявляют свойства кислот и оснований, образуя буферную систему.

Белковый буфер состоит из протеин-Н и протеин-Na, локализуется он преимущественно в клетках. Наиболее важный белковый буфер крови – гемоглобиновый.

Гемоглобиновый буфер

Гемоглобиновый буфер находиться в эритроцитах и имеет ряд особенностей:

1.у него самая высокая емкость (до 75%);

2.его работа напрямую связана с газообменом;

3.он состоит не из одной, а из 2 пар: HHb↔H+ + Hb- и HHbО2↔H+ + HbО2-;

HbО2 является относительно сильной кислотой, он даже сильнее угольной кислоты. Кислотность HbО2 по сравнению с Hb в 70 раз выше, поэтому, оксигемоглобин присутствует в основном в виде калийной соли (КHbО2), а дезоксигемоглобин в виде недиссоциированной кислоты (HHb).

Работа гемоглобинового и бикарбонатного буфера

ТКАНИ

 

 

 

 

 

 

 

 

O2

ПЛАЗМА КРОВИ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KHbO2

 

 

 

 

O2 + КHb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H+, 2,3-ДФГ, CO2, T

 

O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СО2 + Н2О

КА

 

 

Н2СО3

 

 

 

 

 

 

 

 

 

 

 

 

 

NaНСО3 80%

 

 

КHb + Н2СО3

 

 

 

НHb + КНСО3

СО2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6-7%

СО2 + HHb

 

 

 

HHbCO2

К+ НСО3-

НСО3-

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-10%

 

 

 

 

 

 

Na

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KCl

Cl-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЭРИТРОЦИТ

 

 

 

 

Cl-

 

NaCl

 

 

 

 

 

 

белок полосы 3

267

ПЛАЗМА КРОВИ

 

 

 

 

 

 

H+, 2,3-ДФГ, CO2, T

 

 

 

 

 

 

 

 

 

 

 

NaНСО3

 

 

 

 

 

 

O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O2 + HHb

 

 

HHbO2

КНСО

 

К+

+ НСО

-

НСО

-

 

 

 

 

 

 

 

ЛЕГКИЕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

3

 

3

+

HHbO2 + КНСО3

 

KHbO2 2СО3

 

 

 

 

 

 

 

 

 

 

 

Na

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СО2 + Н2О

КА

Н2СО3

 

 

КСl

 

 

Cl

-

 

Cl

-

 

 

NaCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

белок полосы 3

ЭРИТРОЦИТ

Почки регулируют КОС:

1.выведением из организма H+ в реакциях ацидогенеза, аммониогенеза и с участием фосфатного буфера. Н++-АТФазы, H+-АТФаза (в дистальных канальцах) и Na+-H+-антипорт (в проксимальных канальцах) активно секретируют в просвет почечных канальцев H+, которые соединяются в моче с основными фосфатами и аммиаком и выводятся из организма в виде кислых фосфатов (вклад 1/3) и ионов аммония (вклад 2/3). Процесс активируется ацидозом, ингибируется алкалозом;

2.задержкой в организме Na+. Na++-АТФаза реабсорбирует Na+ из мочи, что вместе с карбоангидразой и ацидогенезом обеспечивает регенерацию бикарбонатного буфера. Процесс активируется ацидозом, ингибируется алкалозом;

90.Кислотно-основный гомеостаз: биологическое значение постоянства внутренней среды организма., механизмы поддержания КОС, особенности в детском возрасте.

Кислотно-основное состояние (КОС) - относительное постоянство реакции внутренней среды организма, количественно характеризующееся концентрацией Н+.

Концентрацию Н+ выражают с помощью величины рН. Концентрация Н+, и соответственно величина рН, зависят от соотношения в организме кислот и оснований.

Кислоты Бренстеда - молекулы или ионы, способные отдавать Н+. Основания Бренстеда - соединения, способные принимать Н+.

Самой распространенной кислотой организма является угольная кислота, в сутки ее образуется около 20 моль. Также в организме образуются другие неорганические (соляная, серная, фосфорная) и органические (амино-, кето-, окси-, нуклеиновые, жирные) кислоты в количестве 80 ммоль/сут.

самым сильным из них является аммиак. Основными свойствами также обладают аминокислоты аргинин и лизин, биогенные амины, например, катехоламины, гистамин, серотонин и т.д.

Биологическое значение регуляции рН, последствия нарушений

268

Н+ - положительно заряженные частицы, они присоединяются к отрицательно заряженным группам молекул и анионов, в результате чего те меняют свой состав и свойства. Таким образом, количество Н+ в жидкости определяет строение и свойства всех основных групп органических соединений – белков, нуклеиновых кислот, углеводов и липидов (амфифильных). Самое важное влияние концентрация Н+ оказывает на активность ферментов. У каждого фермента существует свой оптимум рН, в котором фермент имеет максимальную активность. Например, ферменты гликолиза, ЦТК, ПФШ активны в нейтральной среде, а лизосомальные ферменты, ферменты желудка активны в кислой среде (рН=2). В результате, изменения величины рН вызывает изменение активности отдельных ферментов и приводит к нарушению метаболизма в целом

Основные принципы регуляции КОС

Воснове регуляции КОС лежат 3 основных принципа:

1.постоянство рН. Механизмы регуляции КОС поддерживают постоянство рН.

2.изоосмолярность. При регуляции КОС, концентрация частиц в межклеточной и внеклеточной жидкости не изменяется.

3.электронейтральность. При регуляции КОС, количество положительных и отрицательных частиц в межклеточной и внеклеточной жидкости не изменяется.

МЕХАНИЗМЫ РЕГУЛЯЦИИ КОС

1.Физико-химический механизм, это буферные системы крови и тканей;

2.Физиологический механизм, это органы: легкие, почки, костная ткань, печень, кожа, ЖКТ.

3.Метаболический (на клеточном уровне).

91.Нарушения КОС - классификация по механизмам? Биохимические пути компенсации.

НАРУШЕНИЯ КОС

Компенсация КОС - приспособительная реакция со стороны органа, не виновного в нарушение КОС.

Коррекция КОС – приспособительная реакция со стороны органа, вызвавшего нарушение КОС.

Выделяют два основных вида нарушений КОС – ацидоз и алкалоз.

Ацидоз – абсолютный или относительный избыток кислот или дефицит оснований.

Алкалоз – абсолютный или относительный избыток оснований или дефицит кислот.

Ацидоз или алкалоз не всегда сопровождаются заметным изменением концентрации Н+, так как постоянство рН поддерживают буферные системы. Такие ацидозы и алкалозы называются

компенсированными (у них рН в норме). АН ↔ А- + Н+, Н+ + B- ↔ BH

Если при ацидозах или алкалозах буферная емкость израсходована, величина рН изменяется и наблюдается: ацидемия – снижение величины рН ниже нормы, или алкалемия - повышение величины рН выше нормы. Такие ацидозы и алкалозы называются декомпенсированными.

Классификация нарушений КОС (по Лосеву Н.И., Войнову В.А)

269

В зависимости от изменений концентраций в крови СО2 и НСО3- все нарушения КОС делят на газовые и негазовые. По происхождению кислот и оснований негазовые нарушения КОС делят на метаболические, выделительные и экзогенные.

Ацидоз

I. Газовый (дыхательный). Характеризуется накоплением в крови СО2 (рСО2=↑, AB, SB, BB=N,↑).

1). затруднение выделения СО2, при нарушениях внешнего дыхания (гиповентиляция легких при бронхиальной астме, пневмонии, нарушениях кровообращения с застоем в малом круге, отёке лёгких, эмфиземе, ателектазе легких, угнетении дыхательного центра под влиянием ряда токсинов и препаратов типа морфина и т.п.) (рСО2=↑, рО2=↓, AB, SB, BB=N,↑).

2). высокая концентрация СО2 в окружающей среде (замкнутые помещения) (рСО2=↑, рО2, AB, SB, BB=N,↑).

3). неисправности наркозно-дыхательной аппаратуры.

II. Негазовый. Характеризуется накоплением нелетучих кислот (рСО2=↓,N, AB, SB, BB=↓).

1). Метаболический. Развивается при нарушениях тканевого метаболизма, которые сопровождаются избыточным образованием и накоплением нелетучих кислот или потерей оснований (рСО2=↓,N, АР = ↑, AB, SB, BB=↓).

а). Кетоацидоз. При сахарном диабете, голодании, гипоксии, лихорадке и т.д.

б). Лактоацидоз. При гипоксии, нарушении функции печени, инфекциях и т.д.

в). Ацидоз. Возникает в результате накопления органических и неорганических кислот при обширных воспалительных процессах, ожогах, травмах и т.д.

2. Выделительный. Развивается при нарушении процессов ацидо- и аммониогенеза в почках или при избыточной потере основных валентностей с каловыми массами.

3. Экзогенный.

Прием кислой пищи, лекарств (хлористого аммония; переливание больших количеств кровозамещающих растворов и жидкостей для парентерального питания, рН которых обычно <7,0) и при отравлениях (салицилаты, этанол, метанол, этиленгликоль, толуол и др.).

4. Комбинированный.

Например, кетоацидоз + лактоацидоз, метаболический + выделительный и т.д.

III. Смешанный (газовый + негазовый).

Возникает при асфиксии, сердечно-сосудистой недостаточности и т.д.

Алкалоз

I. Газовый (дыхательный). Характеризуется снижением в крови СО2 (рСО2=↓, AB, SB, BB=↓,N).

1). усиленное выведение СО2, при активации внешнего дыхания (гипервентеляция легких при компенсаторной одышке, сопровождающей ряд заболеваний, в том числе нейротоксический синдром, инфекционно-вирусные состояния, истерии, эпилепсии).

(рСО2=↓, рО2=↑, AB, SB, BB=↓,N).

270