Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
термодинамика.doc
Скачиваний:
43
Добавлен:
09.03.2016
Размер:
159.74 Кб
Скачать

4.5.6. Расчет величины g

Величину DG того или иного процесса в стандартных условиях можно рассчитать, используя ее свойство функции состояния. Для реакции, протекающей по уравнению:

aA + bB = pP + qQ

G°(298 К) = [pfG°(298 К, P) + qfG°(298 К, Q)] – [afG°(298 К, A) + bfG°(298 К, B)]

(4.18).

где fG(298 К) –стандартная энергия Гиббса образованиясложного вещества. Под стандартной энергией Гиббса образованияfG(298 К) понимают изменение энергии Гиббса в реакции образования 1 моль сложного вещества из простых веществ в стандартных условиях (T = 298,15 K, p = 101,3 кПа). Для простых веществ, устойчивых в стандартных условиях,fG(298 К) = 0. Для многих веществ величиныfG(298 К) являются справочными.

Изменения стандартной энергии Гиббса fG(298 К) в реакции может быть рассчитано также по уравнению (4.15):

если известны изменения стандартных энтальпии и энтропии химической реакции, а также температура.

4.5.7. Энергия гиббса и температура

В уравнении G =H - T·S величиныH и -T·S имеют противоположные знаки, и от их относительной величины зависит, будет ли значениеG отрицательным или положительным. В этих случаяхважно учитывать температуру процесса. При низких температурах доминирует вклад энергетического фактора: |H| >> |-T·S|, а при высоких температурах - вклад энтропийного фактора: |-T·S| >> |H|. Энтропийный вклад, определяемый величиной "-T·S", может повысить или, наоборот, понизить способность реакции к самопроизвольному протеканию. ПриS > 0 член "-T·S" вносит отрицательный вклад в величинуG, т.е. повышает тенденцию реакции к самопроизвольному протеканию. ПриS < 0 член "-T·S", наоборот, уменьшает тенденцию реакции к самопроизвольному протеканию.

Из уравнения (4.15) видно, что изменение энергии Гиббса будет отрицательным (G < 0), то есть процесс будет протекать самопроизвольно:

  1. при любой температуре, еслиH < 0 иS > 0;

  2. при высокой температуре, еслиH > 0 иS > 0;

  3. при низкой температуре, еслиH < 0 иS < 0.

Если H > 0, аS < 0, тоG > 0 при любых температурах, а реакция является не самопроизвольной (самопроизвольной будет обратная реакция).

На рисунке 4.5 приведены графические зависимости изменения энергии Гиббса химических реакций от температуры. Видно, что при одинаковом знаке величин H иS (либоH > 0 иS > 0, либоH < 0 иS < 0) возможно изменение знакаG. В случае с разноименными знаками величинH иS (и частных случаевH = 0 илиS = 0) изменение знака величиныG не происходит. Поэтому для реакции с одноименными по знаку величинамиH иS можно вычислить температуру равновероятности, выше (дляH < 0 иS < 0) или ниже (H >0 иS > 0) которой данная реакция в прямом направлении становится термодинамически менее вероятной в стандартных условиях. Вычисленное значениеможет оказаться реально недостижимым, если вещества, участвующие в реакции, начнут вступать в побочные реакции или менять свое агрегатное состояние.

Рис. 4. 5. Зависимость стандартной энергии Гиббса реакции G°(Т) от температуры T: I - область преобладания прямых реакций; II - область преобладания обратных реакций.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях следует принять условие G<< 0, а критерием принципиальной невозможности осуществления процесса неравенствоG>>