Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Multiple Bonds Between Metal Atoms / 03-Chromium Compounds

.pdf
Скачиваний:
16
Добавлен:
08.01.2014
Размер:
611.47 Кб
Скачать

Chromium Compounds 65

Cotton

3.4Concluding Remarks

The number of isolated dichromium compounds is large, probably several hundred. Counting only those for which there are crystal structures, there are at least 110. Many of the earliest carboxylates, of course, have never been structurally characterized and have not been discussed here individually. Another entity not discussed here is the gaseous Cr2 molecule, in which the Cr–Cr distance is about 1.68 Å. The entire range of Cr–Cr distances in isolable compounds, from c. 1.83 Å to c. 2.7 Å, occurs within a common paddlewheel arrangement of ligands. The problem posed by this is how best to formulate the interactions between the chromium atoms and explain why they vary so much. It has been established, empirically, that axial ligation is the most important factor influencing Cr–Cr bond lengths.

While all CrII–CrII interactions can, presumably, be regarded as having μ, / and β components, these are not distinctly separated as in analogous MoII–MoII compounds. The strengths of these interactions, like all others, must vary inversely with Cr–Cr distance. At distances <2.00 Å it seems reasonable to assign μ2/4β2 quadruple bonds. At much longer distances it is clear that the β bonding becomes so weak that population of a state based on a triplet ββ* configuration is easily detected and quantified, as discussed in Section 3.1.2. Over the entire range of Cr–Cr distances all of the orbital overlaps, μμ, // and ββ will vary continuously. It is possible that at the longest distances, the covalence in the Cr–Cr interactions might be negligible and the interaction regarded as mere antiferromagnetic coupling. However, there are no criteria, either experimental or theoretical, for drawing any line of demarcation, and probably none exists.

The failure of Hartree-Foch calculations to provide a useful description of the bonding in Cr24+ compounds was referred to in Section 3.1.3. The source of the difficulty lies in the severe problem of electron correlation, a matter that was addressed in an instructive way by M. B. Hall.69 Clearly, calculations without any allowance for configuration interaction70,71 give hopelessly erroneous results. The idea of distinct LCAO-MOs, each occupied by an electron pair, is too simple an approximation, although it serves well for Mo24+ compounds. Even efforts to salvage it by adding heavy corrections for configuration interaction72-77 are of doubtful value. Neither generalized valence bond calculations nor DFT have given anything like satisfactory results either. The only calculations that have given any theoretical inkling that a bare Cr2(O2CR)4 molecule could have a Cr–Cr distance below 2.00 Å were done by a complete- active-space, self-consistent-field (CASSCF) method applied to Cr2(O2CH)4.118 A measurement of the photoelectron spectrum119 of Cr2[(p-tol)NC(H)N(p-tol)]4 showed that the nominal μ, / and β orbitals, together with some ligand-based orbitals, are all bunched together in a range of 0.81 eV.

References

1.E. Peligot, C. R. Acad. Sci., 1844, 19, 609; Ann. Chim. Phys. 1844, 12, 528.

2.L. R. Ocone and B. P. Block, Inorg. Synth. 1966, 8, 125.

3.G. Brauer, Handbuch der präparativen anorganischen Chemie, Bd. 2, Enke, Stuttgart, 1962.

4.F. A. Cotton and G. W. Rice, Inorg. Chem. 1978, 17, 688.

5.F. A. Cotton, B. G. DeBoer, M. D. LaPrade, J. R. Pipal and D. A. Ucko, Acta Crystallogr. 1971, B27, 1664.

6.F. A. Cotton and T. R. Felthouse, Inorg. Chem. 1980, 19, 328.

7.M. H. Chisholm, F. A. Cotton, M. W. Extine and D. C. Rideout, Inorg. Chem. 1979, 18, 120.

8.M. H. Chisholm, F. A. Cotton, M. W. Extine and D. C. Rideout, Inorg. Chem. 1978, 17, 3536.

9.M. Ardon, A. Bino, S. Cohen and T. R. Felthouse, Inorg. Chem. 1984, 23, 3450.

10.F. A. Cotton and G. Schmid, Inorg. Chim. Acta 1997, 254, 233.

66Multiple Bonds Between Metal Atoms Chapter 3

11.S. Herzog and W. Kalies, Z. anorg. allg. Chem. 1964, 329, 83; Z. anorg. allg. Chem. 1967, 351, 237;

Z.Chem. 1964, 5, 183.

12.P. Sharrock, T. Theophanides and F. Brisse, Can. J. Chem. 1973, 51, 2963.

13.F. A. Cotton and G. W. Rice, Inorg. Chem. 1978, 17, 2004.

14.(a) F. A. Cotton, M. W. Extine, and G. W. Rice, Inorg. Chem. 1978, 17, 176; (b) L. Bennes,

J.Kalousova, and J. Votinsky, J. Organomet. Chem. 1985, 290, 147.

15.F. A. Cotton and G. W. Rice, Inorg. Chim. Acta 1978, 27, 75.

16.A. A. Pasynskii, I. L. Eremenko, T. C. Idrisov and V. T. Kalinnikov, Koord. Khim. 1977, 3, 1205.

17.See, for example, F. Baugé, Ann. Chim. Phys. 1900, 19, 158 and earlier references therein.

18.R. Ouahes, J. Amiel and H. Suquei, Rev. Chim. Min. 1970, 7, 789.

19.R. Ouahes, H. Pezerat and J. Gayoso, Rev. Chim. Min. 1970, 7, 849.

20.R. Ouahes, B. Devallez and J. Amiel, Rev. Chim. Min. 1970, 7, 855.

21.P. D. Ford, L. F. Larkworthy, D. C. Povey and A. J. Roberts, Polyhedron 1983, 2, 1317.

22.C. J. Bilgrien, R. S. Drago, C. J. O’Connor and N. Wong, Inorg. Chem. 1988, 27, 1410.

23.F. A. Cotton, H. Chen, L. M. Daniels and X. Feng, J. Am. Chem. Soc. 1992, 114, 8980.

24.C. Furlani, Gazz. Chim. Ital. 1957, 87, 885.

25.L. Dubicki and R. L. Martin, Inorg. Chem. 1966, 5 , 2203.

26.R. D. Cannon, J. Chem. Soc. (A) 1968, 1098; R. D. Cannon and M. J. Gholami, J. Chem, Soc., Dalton Trans. 1976, 1574.

27.L. M. Wilson and R. D. Cannon, Inorg. Chem. 1988, 27, 2382.

28.J. M. Bellerby, D. A. Edwards and D. Thompsett, Inorg. Chim. Acta 1986, 117, L31.

29.R. D. Cannon and J. S. Stillman, Inorg. Chem. 1975, 14, 2202; 2207.

30.R. D. Cannon and M. J. Gholami, Bull. Chem. Soc. Jpn. 1982, 55, 594.

31.E. H. Abbott and J. M. Mayer, J. Coord. Chem. 1977, 6, 135.

32.L. M. Wilson and R. D. Cannon, Inorg. Chem. 1985, 24, 4366.

33.A. S. Carson, J. Chem. Thermodynamics 1984, 16, 427.

34.F. A. Cotton, C. E. Rice and G. W. Rice, J. Am. Chem. Soc. 1977, 99, 4704.

35.F. A. Cotton and J. L. Thompson, Inorg. Chem. 1981, 20, 1292.

36.F. A. Cotton, X. Feng, P. A. Kibala and M. Matusz, J. Am. Chem. Soc. 1988, 110, 2807.

37.S. N. Ketkar and M. Fink, J. Am. Chem. Soc. 1985, 107, 338.

38.N. V. Gerbeleu, G. A. Popovich, K. M. Indrichan and G. A. Timko, Russ. J. Inorg. Chem. 1983, 28, 1720.

39.F. A. Cotton, E. A. Hillard, C. A. Murillo and H.-C. Zhou, J. Am. Chem. Soc. 2000, 122, 416.

40.R. A. Kok and M. B. Hall, J. Am. Chem. Soc. 1983, 105, 676.

41.R. Wiest and M. Bénard, Chem. Phys. Lett. 1983, 98, 102.

42.R. A. Kok and M. B. Hall, Inorg. Chem. 1985, 24, 1542.

43.R. B. Davy and M. B. Hall, J. Am. Chem. Soc. 1989, 111, 1268.

44.F. A. Cotton and W. Wang, Nouv. J. Chim. 1984, 8, 331.

45.C. D. Garner, R. G. Senior and T. J. King, J. Am. Chem. Soc. 1976, 98, 3526.

46.R. Wiest and M. Bénard, Theor. Chim. Acta 1984, 66, 65.

47.F. A. Cotton, S. Koch and M. Millar, J. Am. Chem. Soc. 1977, 99, 7372.

48.F. A. Cotton, S. A. Koch and M. Millar, Inorg. Chem. 1978, 17, 2087.

49.F. A. Cotton and M. Millar, Inorg. Chim. Acta 1977, 25, L105.

50.L. Pauling, The Nature of the Chemical Bond, 3rd ed, Cornell University Press, 1960, p. 403.

51.F. Hein and D. Tille, Z. anorg. allg. Chem. 1964, 329, 72.

52.R. P. A. Sneeden and H. H. Zeiss, J. Organomet. Chem. 1973, 47, 125.

53.F. A. Cotton, S. A. Koch and M. Millar, Inorg. Chem. 1978, 17, 2084.

54.F. Hein and D. Tille, Monatsber. Dtsch. Akad. Wiss. Berlin, 1962, 4, 414.

55.F. A. Cotton and S. Koch, Inorg. Chem. 1978, 17, 2021.

56.F. A. Cotton and M. Millar, Inorg. Chem. 1978, 17, 2014.

57.F. A. Cotton, P. E. Fanwick, R. H. Niswander and J. C. Sekutowski, J. Am. Chem. Soc. 1978, 100, 4725.

Chromium Compounds 67

Cotton

58.F. A. Cotton, R.H. Niswander and J. C. Sekutowski, Inorg. Chem. 1978, 17, 3541.

59.F. A. Cotton, R. H. Niswander and J. C. Sekutowski, Inorg. Chem. 1979, 18, 1152.

60.F. A. Cotton, W. H. Ilsley and W. Kaim, Inorg. Chem. 1980, 19, 1453.

61.F. A. Cotton, L. R. Falvello, S. Han and W. Wang, Inorg. Chem. 1983, 22, 4106.

62.A. Bino, F. A. Cotton and W. Kaim, J. Am. Chem. Soc. 1979, 101, 2506.

63.A. Bino, F. A. Cotton and W. Kaim, Inorg. Chem. 1979, 18, 3030.

64.F. A. Cotton and W. Wang, unpublished work.

65.S. Baral, F. A. Cotton and W. H. Ilsley, Inorg. Chem. 1981, 20, 2696.

66.F. A. Cotton, W. H. Ilsley and W. Kaim, J. Am. Chem. Soc. 1980, 102, 3475.

67.F. A. Cotton, W. H. Ilsley and W. Kaim, J. Am. Chem. Soc. 1980, 102, 3464.

68.F. A. Cotton, W. H. Ilsley and W. Kaim, Angew. Chem., Int. Ed. Engl. 1979, 18, 874.

69.M. B. Hall, Polyhedron 1987, 6, 697.

70.C. D. Garner, I. H. Hillier, M. F. Guest, J. C. Green and A. W. Coleman, Chem. Phys. Lett. 1976, 41, 91.

71.P. Correa de Mello, W. D. Edwards and M. C. Zerner, J. Am. Chem. Soc. 1982, 104, 1440; Int. J. Quantum Chem. 1983, 23, 425.

72.M. Bénard, J. Chem. Phys. 1979, 71, 2546.

73.M. F. Guest, I. H. Hillier and C. D. Garner, Chem. Phys. Lett. 1977, 48, 587.

74.M. Bénard and A. Veillard, Nouv. J. Chim. 1977, 1, 97.

75.M. Bénard, J. Am. Chem. Soc. 1978, 100, 2354.

76.P. M. Atha, I. H. Hillier and M. F. Guest, Mol. Phys. 1982, 46, 437.

77.P. M. Atha, I. H. Hillier, A. A. MacDowell and M. F. Guest, J. Chem. Phys. 1982, 77, 195.

78.A. Bino, F. A. Cotton and W. Kaim, Inorg. Chem. 1979, 18, 3566.

79.F. A. Cotton, G. W. Rice and J. C. Sekutowski, Inorg. Chem. 1979, 18, 1143.

80.F. A. Cotton and T. Ren, J. Am. Chem. Soc. 1992, 114, 2237.

81.F. A. Cotton, C. A. Murillo and I. Pascual, Inorg. Chem. 1999, 38, 2182.

82.F. A. Cotton, L. M. Daniels, C. A. Murillo and P. Schooler, J. Chem. Soc., Dalton Trans. 2000, 2007.

83.S. Hao, S. Gambarotta, C. Bensimon and J. J. H. Edema, Inorg. Chim. Acta 1993, 213, 65.

84.F. A. Cotton, C. A. Murillo and I. Pascual, Inorg. Chem. Commun. 1999, 2, 101.

85.F. A. Cotton, L. M. Daniels, C. A. Murillo and P. Schooler, J. Chem. Soc., Dalton Trans. 2000, 2001.

86.K. M. Carlton-Day, J. L. Eglin, C. Lin, L. T. Smith, R. J. Staples and D. O. Wipf, Polyhedron 1999, 18, 817.

87.M. Dionne, S. Hao and S. Gambarotta, Can. J. Chem. 1995, 73, 1126.

88.F. A. Cotton and D. J. Timmons, Polyhedron 1998, 17, 179.

89.F. A. Cotton, L. M. Daniels, P. Huang and C. A. Murillo, Inorg. Chem. 2002, 41, 317.

90.F. A. Cotton, N. S. Dalal, E. A. Hillard, P. Huang, C. A. Murillo and C. M. Ramsey, Inorg. Chem. 2003, 42, 1388.

91.F. A. Cotton, N. E. Gruhn, J. Gu, P. Huang, D. L. Lichtenberger, C. A. Murillo, L. O. Van Dorn and C. C. Wilkinson, Science 2002, 298, 1971.

92.F. A. Cotton, L. M. Daniels, C. A. Murillo, I. Pascual and H.-C. Zhou, J. Am. Chem. Soc. 1999, 121, 6856.

93.F. A. Cotton, C. A. Murillo, L. E. Roy and H.-C. Zhou, Inorg. Chem. 2000, 39, 1743.

94.K. Mashima, M. Tanaka, K. Tani, A. Nakamura, S. Takeda, W. Mori and K. Yamaguchi, J. Am. Chem. Soc. 1997, 119, 4307.

95.F. A. Cotton, B. E. Hanson, W. H. Ilsley and G. W. Rice, Inorg. Chem. 1979, 18, 2713.

96.E. Kurras, U. Rosenthal, M. Mennenga, G. Oehme and G. Engelhardt, Z. Chem. 1974, 14, 160.

97.E. Kurras and J. Otto, J. Organomet. Chem. 1965, 4, 114.

98.J. Krausse, G. Marx and G. Schödl, J. Organomet. Chem. 1970, 21, 159.

99.J. Krausse and G. Schödl, J. Organomet. Chem. 1971, 27, 59.

100.S. Hao, S. Gambarotta and C. Bensimon, J. Am. Chem. Soc. 1992, 114, 3556.

68Multiple Bonds Between Metal Atoms Chapter 3

101.T. Aoki, A. Furusaki, Y. Tomiie, K. Ono and K. Tanaka, Bull. Chem. Soc. Jpn. 1969, 42, 545.

102.G. Albrecht and D. Stock, Z. Chem. 1967, 7, 321.

103.S. I. Beilin, S. B. Golstein, B. A. Dolgoplosk, L. Sh. Guzman and E. I. Tinyakova, J. Organomet. Chem. 1977, 142, 145.

104.D. J. Brauer and C. Krüger, Inorg. Chem. 1976, 15, 2511.

105.H. Breil and G. Wilke, Angew. Chem. 1966, 78, 942.

106.P. L. Timms and T. W. Turney, J. Chem. Soc., Dalton Trans. 1976, 2021.

107.F. A. Cotton and G. N. Mott, Organometallics 1982, 1, 302.

108.R. A. Andersen, R. A. Jones, G. Wilkinson, M. B. Hursthouse and K. M. Abdul, J. Chem. Soc., Chem. Commun. 1977, 283.

109.F. A. Cotton, J. Czuchajowska and X. Feng, Inorg. Chem. 1990, 29, 4329.

110.J. J. H. Edema, S. Gambarotta, P. van der Sluis, W. J. J. Smeets and A. L. Spek, Inorg. Chem. 1989, 28, 3782.

111.F. A. Cotton, R. L. Luck and K.-A. Son, Inorg. Chim. Acta 1990, 168, 3.

112.F. A. Cotton, L. M. Daniels, C. A. Murillo and H.-C. Zhou, Inorg. Chim. Acta 2000, 300-302, 319.

113.J. J. H. Edema, S. Gambarotta, A. Meetsma, F. van Bolhuis, A. L. Spek and W. J. J. Smeets, Inorg. Chem. 1990, 29, 2147.

114.F. A. Cotton, C. A. Murillo and H.-C. Zhou, Inorg. Chem. 2000, 39, 3728.

115.F. A. Cotton and W. Wang, Polyhedron 1985, 4, 1735

116.(a) F. A. Cotton, G. E. Lewis, C. A. Murillo, W. Schwotzer and G. Valle, Inorg. Chem. 1984, 23, 4038; (b) N. M. Alfaro, F. A. Cotton, L. M. Daniels and C. A. Murillo, Inorg. Chem. 1992, 31, 2718.

117.F. A. Cotton, L. M. Daniels, P. Lei, C. A. Murillo and X. Wang, Inorg. Chem. 2001, 40, 2778.

118.K. Andersson, C. W. Bauschlicher, Jr., B. J. Persson and B. O. Roos, Chem. Phys. Lett. 1996, 257, 238.

119.D. L. Lichtenberger, M. A. Lynn and M. H. Chisholm, J. Am. Chem. Soc. 1999, 121, 12167.

Соседние файлы в папке Multiple Bonds Between Metal Atoms