Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

FIZIOLOGIYa_ekzamen1_1

.PDF
Скачиваний:
101
Добавлен:
20.03.2016
Размер:
1.12 Mб
Скачать

При подсчете учитывают эритроциты, находящиеся внутри, а также на верхней и левой сторонах квадрата.

6.Гемоглобин,его виды, свойства и функции. Гемоглобин - это хемопротеин, окрашивающий эритроцит в красный цвет после присоединения к содержащемуся в нем железу (Fe++) молекулы кислорода. Функция гемоглобина - обеспечение газообмена посредством обратимого связывания кислорода и углекислого газа и переноса этих газов в составе эритроцита. В норме гемоглобин содержится в виде 3 физиологических соединений. Гемоглобин, присоединивший кислород, превращается в осигемоглобин - HbO2. Оксигемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином (Hb). Карбгемоглобин - соединение гемоглобина с углекислым газом, которое траснпортирует СО2 к легким. Патологические формы гемоглобина - карбоксигемоглобин и метгемоглобин. Карбоксигемоглобин - соединение гемоглобина с угарным газом. Угарный газ обладает огромным сродством к гемоглобину, что вызывает первращение 80% гемоглобина в карбоксигемоглобин при концентрации СО в воздухе, равной 0,1%. Слабое отравление угарным газом ликвидируется подачей в легкие чистого кислорода. Метгемоглобин - окисленный гемоглобин, в котором под влиянием сильных окислителей железо гема переходит в степень окисления 3. Способы определения гемоглобина в крови. Количество гемоглобина в крови определяется колориметрическим методом с помощью гемометра Сали (проводится разведение солянокислого гематина дистиллированной водой). Цветовой показатель крови характеризует относительное насыщение эритроцитов гемоглобином. В норме цветовой показатель составляет 0,8-1,0. эритроциты. ГЕМОЛИЗ - разрушение эритроцитов крови с выделением в окружающую среду гемоглобина, кот бывает: осмотическим, химическим, механический, термический и биологический.

7.Лейкоциты, их значение и кол-во. Виды лейкоцитоза. Методы подсчета лейкоцитов. Лейкоциты формируют в организме человека мощный кровяной и тканевой барьеры против микробной, вирусной, паразитарной инфекции, поддерживают тканевой гомеостазис и регенерацию тканей. Норма - 4-9 миллионов лейкоцитов на 1 литр крови. Увеличение количества лейкоцитов называют лейкоцитозом, уменьшение – лейкопенией. Виды:1)пищевой - возникает после приема пищи и носит перераспределительный характер и обеспечивается поступлением лейкоцитов в кровоток из депо крови; 2)миогенныйпосле выполнения тяжелой мышечной работы и носит как перераспределительный, так и истинный характер, так как при нем наблюдается усиление костномозгового кроветворения; 3) эмоциональный-. при болевом раздражении, носит перераспределительный характер и редко достигает высоких показателей; 4) при беременности-в основном носит местный характер. Подсчет количества лейкоцитов проводят в счетной камере Горяева (стеклянная пластинка с тремя площадками, средняя площадка ниже на 1/10 мм; на площадках есть сетки с квадратиками со стороной 1/20 мм). Образец крови разводится 5% раствором уксусной кислоты, подкрашенной метиленовой синью в соотношении 1:20 в смесителе (капилляр с ампулообразным расширением), после чего помещают кровь в камеру Горяева под покровное стекло и подсчитывают число лейкоцитов в 100 больших квадратах. Процентное соотношение лейкоцитовлейкоцитарная формула. В крови здорового человека могут встречаться зрелые и юные формы лейкоцитов, однако в норме обнаружить их удается лишь у самой многочисленной группы — нейтрофилов. Увеличение количества нейтрофилов свидетельствует об омоложении крови и носит название сдвига лейкоцитарной формулы влево, снижение количества этих клеток свидетельствует о старении крови и называется сдвигом лейкоцитарной формулы вправо.

8.Виды лейкоцитов, их физиологическая роль. Нейтрофильные гранулоциты. Оснвная функция - ликвидация проникших в организм инфекционных агентов. Секретируют бактерицидные вещества, способствуют регенерации тканей, удаляя из них поврежденные клетки и стимулируя ткань специальными факторами. Базофильные гранулоциты. Поддерживают кровоток в мелких сосудах и способствуют трофике тканей, обеспечивают миграцию других лейкоциов в ткани. Формируют аллергические реакции немедленного типа. Эозинофильные гранулоциты. Защищают организм от паразитарной инфекции (гельминтозов). Снижают концентрацию БАВ во время аллергических реакций. Антагонисты тучных клеток и базофилов. Моноциты-макрофаги (Система фагоцитирующих мононуклеаров). Участвуют в регуляции гемопоэза и регенерации тканей. Способны уничтожать паразитов. В- и Т-лимфоциты участвуют в формировании гуморального и клеточного иммунных

ответов, взаимодействуют между собой; организуют креаторные связи (обмен информацией о управлении генетическим аппаратом клетки). Т-лимфоциты представлены Т-киллерами, Т-хелперами, Т-супрессорами, Т-клетками памяти и Т-амплифайеры (активируют Т-киллеры). В-лимфоциты представлены плазмоцитами и В-клетками памяти. Нулевые лимфоциты - не пршедшие дифференцировку, могут превратиться в В- или Т-клетки.

Кровообращение.

1.Морфо-функциональная характеристика системы кровообращения. Значение кровообращения для поддержания жизнедеятельности организма.

С-ма кровообр сост из 4 ком-тов: серд, кров сосудов, органов – депо крови, механизмов регуляции. С-ма кровообр явл составляющим ком-том серд-сосуд с-мы, кот, помимо с-мы кровообр, включ в себя и с-му лимфообр. Благодаря ее наличию обеспеч пост непрерыв дв-ние крови по сосудам, на что влияет ряд факторов: 1) работа сердца как насоса; 2) разность давления в серд-сосуд с-ме; 3) замкнутость; 4) клапанный аппарат сердца и вен, что препят обрат току крови; 5)эластичность сосуд стенки, за счет чего происходит превращение пульсирующего выброса крови из сердца в непрерыв ток 6) (-) внутриплевраль давление (присасывает кровь и облегчает ее венозный возврат к сердцу);7)сила тяжести крови 8) мышечн активность (сокращение скелет мышц обеспечивает проталкивание крови, при этом увелич частота и глубина дыхания, что приводит к пониж давления в плеврал полости, повыш активности проприорецепторов, вызыв возбуждение в ЦНС и увелич силы и частоты сердеч сокращений). В организ чел кровь циркулт по 2 кругам кровообр – бол и мал, кот вместе с сердцем образ замкнутую с-му. Знач. кровообр: 1) перенос ко всем тканям О2 и пит в-ва; 2) перенос соединений, не потреб организмом, от всех тканей к органам выделения; 3)доставку от одн органов к др соединений, образуем в процессе обмена в-в.

3.Электрическая активность клеток миокарда и ее ионные механизмы

В естеств услов клет миокарда наход в сост ритмической активности (возбуждения), их ПП=90 мВ и опред концентрац градиентом ионов К. В ПД различ фазы: быстр начальн деполяризацию— фаза1;медлен реполяризацию, (плато)—фаза2;быстр реполяризацию - фаза3;фазу покоя—фаза 4. Фаза1 обуслов повыш Na прониц-ти, т.е. активацией быстр Na каналов клет м-ны. Во время пика ПД проис измен знака ПП(с —90 до +30 мВ). Деполяризация м-ны вызыв активацию медл Na-K каналов. Поток ионов Са2+ внут клеn по этим каналам приводит к развитию плато ПД (фаза 2). В период плато Na каналы инактивируются и клет переходит в сост-ние абсол рефрактерности. Одноврем происход активация K каналов. Выход из кл поток К+ обеспеч быстр реполяризацию м-ны (фаза 3), во время кот Ca каналы закрыв-тся, что ускор процесс реполяризации (поскольку падает входящий Ca ток, деполяризующий м-ну). Реполяризация м-ны вызыв постепен закрыв K и реактивацию Na каналов. В р-тате возбудимость миокардиальн кл восстан-ется — это период – относит рефрактерности.

4.Проводящая система сердца, ее функциональные особенности.

Проводящ с-ма сост из синусно-предсердного (синоатриального) узла — водителя ритма сердца, и предсердно-желудочкового (атриовентрикулярного) узла, предсердно-желудочковый пучок (пучок Гиса), делящ на прав и лев ножки. В области верхушки сердца ножки переходят в сеть сердечных проводящих миоцитов (волокна Пуркинье), погруженных в рабочий (сократительный) миокард желудочков. Ф-ции провод с-мы :1)явл внутрисердеч генератором ритма сердца, что обеспеч автоматизмом и проводит возбужд в сердце последов сокр-нием предсерд и желуд;2)синхронность сокращ участков миокарда желудочков. Градиент автоматии выражается в убыв способности к автоматии различ участков провод с-мы по мере их удал от синусно-предсердн узла, генерирующего импульса с частот до 60—80 в мин. Скор распространения возбуждения в предсердно-желудочковом пучке состав 1-1,5м/с, а в диффузно расположенных миоцитах достигает 4,5—5 м/с, поэт происход синхронное сокращение миокарда желудочков. Некусымежклеточ контакты. Благодаря налич контактов миокард, работает как единой целое. Больш кол-во некусов увелич надежность проведения возбуждения в миокарде.

7. Изменение возбудимости миокарда в различные фазы сердечного цикла. Экстрасистола и компенсаторная пауза.

Возбуд миокарда развив циклич, что выража з-ном периодическ невозбудимости сердца: в систоле отсутст возбуд миокарда, а в диастоле сердеч возбуд достиг самых высок уровней.С момента возник ПД, кот = 0,3 с и до конца его плато (во время фаз 0, 1 и 2) мем-на кардиомиоцитов становит невосприимчивой к действию др раздражителей, т.е. наход в абсолют рефрактерности. Период относит рефрактерности, во время кот сердеч мышца может отвечать сокращением лишь на очень сильные раздражения и соответ фазе быстрой реполяризации; и период супернормальной возбудимости, когда сердеч мышца может отвечать сокращением на подпороговые.Сокращение миокарда = 0,3с по времени совпад с длительн общей рефрактерности и представл собой сумму абсолют и относит реф-ти. Следоват, в периоде сокращения сердце не способно реагировать на другие раздражители Экстрасистола - внеочередн сокращ сердца. Если внеочередн возбужд возник в синусно-предсердном узле, когда рефрактерн период закончился, но очередной автоматический импульс еще не появился, наступает раннее сокращение сердца — синусовая экстрасистола. Экстрасистола, вызван возбужд, возник в одном из желудочков (желудочковая экстрасистола), приводит к продолжит компенсаторной паузе желудочков при неизмен ритме работы предсердий.

8.Электрокардиограмма, механизм формирования, методы регистрации.

ЭКГ - метод, позвол оценить динамику распростран возбужд в сердце и судить о наруш серд деят-сти. Для регистрац ЭКГ использ 3 стандартных отведения от конечн: I отвед: прав рука - лев рука; II отвед: прав рука - левнога; III отвед: лев рука - лев нога. Кроме того, регистрир 3 униполярн усилен отвед по Гольдбергеру: aVRна прав руку, aVL - на лев руку, при aVF — на лев ногу. Вильсоном предложрегистр- 6 груд отвед. ЭКГ отража последов охват возбужд сократ миокарда предсерд и желудочк. Зубец Р- охват возбужд предсердий (предсердный). Сегмент PQ - оба предсердия полностью возбуждены. Комплекса QRS - охват возбужд желудочков. Зубец Q - верхуш сердца, прав сосоч мышцы, зубец R - основания сердца, зубец S – охват возбужд желудочк. Зубец Т отраж. процессы реполяризации.

9.Нагнетательная способность сердца. Наполнение сердца кровью.

Сердце нагнет кровь в сосуд с-му благод период синхрон сокращен мыш клеток, составляющ миокард предсердий и желудочков. Сокращение миокарда вызыв повыш давления крови и изгнание ее из камер сердца Вслед налич общих слоев миокарда у обоих предсердии и у обоих желудочков и одноврем прихода возбужд к клеткам миокарда по сердеч проводящим миоцитам (волокнам Пуркинье) сокращение обоих предсердий, а затем и обоих желудочков осуществляется одновременно. При сокращ. предсердий кровь направляется в желудочки, сокрщ желудоч приводит к устремлен крови обратно, тем самым закрывая предсердно-желудочков клапаны. В слевствии этого повыш давление в желудочках и кровь изгоняется в аорту и легочн артерию(диастола). при ситоле желудочков кровь снова устрем обратно, закрыв клапаны аоты и легочн ствола. Во время диастолы предсердий и желудочков давление в камерах сердца падает, вследствие чего кровь начинает притекать из вен в предсердия. Наполн сердца кровью обуслов причин:1) остаток движущей силы, вызван предыдущ сокращен сердца;2) сокращ скелет мышц и в следств этого сдавливание вен конечн и туловища;3) присасыв ее грудн клеткой, особенно во время вдоха.

10. Фазы сердечного цикла, их продолжительность и функциональная характеристика.

Период напряжения (0,08с) сост из 2 фаз. Фаза асинхронного сокращения миокарда желудочков (0,05с) Точкой отсчета нач фазы - зубец Q. Давл в желуд близко к 0. К концу фазы сокращ охват все волокна миокарда, а давление в желуд давл увелич. Фаза изометрического сокращения (0,03 с.) начин с захлоп створок предсердно-желудоч клапанов. Давл в желуд увелич: в лев до 70—80 и. в пра до 15—20 К концу давл в желуд выше давл в аорте и легочной артерии, полулунные клапаны открыв.Период изгнания крови из желудочков длится (0,25с) сост из фазы быстрого изгнания(0,12 с) Давл в желуд

увелич: в лев до 120—130., а в прав до 25.и фазы медленного изгнания(0,13 с). Давл в желуд падает, кровь из аорты и легоч артерии устрем обратно в полости желуд и захлоп полулун клапаны..протодиастолическим периодом(0,04 с). давл в желуд падает. К концу давл в желуд стан ниже, чем в предсердиях, открыв предсердно-желудочковые клапаны и кровь из предсердий поступ в желудочки. период наполнения желуд кровью(0,25с). и сост из фазы быстрого (0,08 с) и медленного (0,17 с) наполнения.. К концу фазы медленного наполнения возник систола предсердий. Предсердия нагнетают в желудочки дополнительное количество крови (пресистолический период, равный 0,1 с), после чего начинается новый цикл деятельности желудочков.

18. ОПСС, его величина в зависимости от пола и возраста. Методы расчета ОПСС в абсолютных и условных единицах, зависимость МОК от величины ОПСС. ОПСС зависит от тонуса сосудов мышечного типа, определяющего их радиус, длины сосуда и вязкости протекающей крови. Рассчитать ОПСС можно по формуле: W=p/l, где W – ОПСС в дн/см2, p – среднее АД, I – сердечный индекс. ОПСС может быть выражен также в условных единицах и рассчитан по формуле: W=Ср.АД*пов-ть тела/ДМО, где ДМО – должный минутный объем, который можно рассчитать по формуле: ДМО=должный основн обмен/422. Среднее значение ОПСС для мужчин 19-22 лет составляет 289*104 дн/см2 (36,2 у.е.), для женщин того же возраста – 310*104 дн/см2 (38,8 у.е.). С возрастом ОПСС возрастает и у лиц обоего пола старше 70 лет составляет 380*104 дн/см2 (47,5 у.е.).

19. Внутрисердечные, внутриклеточные и межклеточные регуляторные механизмы.

Внутрисердечные периферические рефлексы. В каждом миоците действуют механизмы регуляции синтеза белков, обеспечивающих сохранение ее структуры и функций. Скорость синтеза каждого из белков регулируется собственным ауторегуляторным механизмом, поддерживающим уровень воспроизводства данного белка в соответствии с интенсивностью его расходования. При увеличении нагрузки на сердце синтез сократительных белков миокарда усиливается. Появляется т.н. рабочая гипертрофия миокарда. Внутриклеточные механизмы регуляции обеспечивают и изменение интенсивности деят-ти миокарда в соответствии с количеством притекающей к сердцу крови. Этот мех- м получил название «закон Франка-Старлинга»: сила сокращения сердца пропорциональна степени его кровенаполнения в диастолу, т.е. исходной длине его мышечных волокон. Сл-но, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. Такой тип миогенной регуляции сократимости миокарда получил название гетерометрической регуляции. Под гомеометрической регуляцией понимают изменение силы сокращений при неменяющейся исходной длине волокон миокарда. В качестве теста на гомеометрическую регуляцию используют пробу Анрепа – резкое увеличение сопротивления выбросу крови из левого желудочка в аорту. Это приводит к увеличению в определенных границах силы сокращений миокарда. Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто механич ф-ию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему в-в, третьи – нексусы, или тесные контакты, проводят возбуждение с клетки на клетку. К межклеточным взаимодействиям следует отнести и взаимоотношения кардиомиоцитов с соединительнотканными клетками миокарда. Они поставляют для сократительных клеток миокарда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Такой тип наз-ся креаторные связи. Внутрисердечные периферические рефлексы. Более высокий уровень внутриорганной регуляции представлен внутрисердечными рефлексами. В сердце возникают рефлексы, дуга которых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. В экспериментах показано, что увеличение растяжения миокарда правого предсердия приводит к усилению сокращений левого желудочка. В естественных условиях внутрисердечная нервная система не явл-ся автономной. Она лишь низшее звено в иерархии нервных мех-мов, регулир деят-ть сердца.

20. Внесердечные регуляторные механизмы. Характер влияния парасимпатической и

симпатической нервной системы. Исследования И.П. Павлова. Химическая природа передачи нервных импульсов. Регуляция осуществляется по блуждающим и симпатическим нервам. Сердечные нервы образованы двумя нейронами. Тела первых нейронов, отростки которых составляют блужд

нервы, лежат в продолг мозге. Отростки этих нейронов заканч в интрамуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам. Первые нейроны симпатических нервов расположены в боковых рогах пяти верхних сегментов грудного отдела спинного мозга. Отростки этих нейронов заканч в шейных и в. Грудных симпатич узлах. В этих узлах наход-ся вторые нейроны, отростки которых идут к сердцу. Влияние на сердце блуждающих нервов описали братья Вебер. Длительное раздражение этих нервов урежает ЧСС вплоть до остановки в диастолу. Это явление называется отрицательный хронотропный эффект.

Отрицательный инотропный эффект – уменьшение силы сокращений. Отрицательный батмотропный эффект – понижение возбудимости. Отрицательный дромотропный – замедление проведения возбуждения. Отрицательный клинотропный – падение скорости нарастания давления в фазу изометрического сокращения. При продолжении раздражения блуждаюшего нерва деят-ть сердца восстанавливается (ускользание сердца из-под влияния блуждающего нерва). Влияние симпатических нервов впервые было изучено братьями Цион, а затем Павловым. Братья Цион описали тахикардию при раздражении симпатич нервов (положительный хронотропный). Также наблюдаются положительный инотропный, дромотропный, батмотропный, клинотропный эффекты. Павлов обнаружил нервные волокна, раздражение которых усиливает сокращения без увеличения ЧСС (усиливающий нерв).

Химическая природа передачи нервных импульсов. При раздраж периферических отрезков блужд нерво в их окончаниях выделяется ацетилхолин, а симпатических нервов – норадреналин. Эти в-ва получили название медиаторов. АХ, образ-ся в блужд нерве разрушается быстрее чем норадреналин в симпатическом.

21. Интеграция механизмов формирования ритма сердца. Представление о «внутрисердечном» и «центральном» генераторах ритма сердца. Сложившиеся представления о формировании ритма сердца состоят в следующем: ритм сердца рождается в самом органе в его специализированных структурах, облад способностью к автоматизму; автономная нервная система оказывает на ритм корригирующее влияние. Однако в последние годы получены данные, позволяющие критически переосмыслить факты и представления о механизмах формирования ритма сердца. Наряду с существованием внутрисердечного генератора ритма сердца имеется и генератор ритма сердца в ЦНС – в эфферентных структурах сердечного центра продолговатого мозга. Возникающие там нервные сигналы в форме залпов импульсов поступают к сердцу по блуждающим нервам и взаимодействуя с внутрисердечными ритмогенными структурами, вызывают генерацию возбуждения в сердце в точном соответствии с частотой залпов (В.М. Покровский). Таким образом, по функциональному значению сигналы, приходящие из ЦНС, являются пусковыми – каждый залп сопровождается одним сокращением сердца. Совокупность накопленных факторов свидетельствует о существовании наряду с генератором ритма в самом сердце генератора ритма в ЦНС. Внутрисердечный генератор является фактором жизнеобеспечения, сохраняя насосную функцию тогда, когда ЦНС находится в состоянии глубокого торможения. Центральный генератор организует адаптивные реакции сердца в естественных регуляторных реакциях организма.

25.Основные законы гемодинамики. Функционально-морфологическая классификация сосудов.

Гемодинамика —наука, изуч механизмы движения крови в сердеч-сосудист с-ме. Он является частью гидродинамики раздела физики, изучающего движение жидкостей. Согласно закону гидродинамики: Q=(P1-P2)/R для сосуд с-мы это уравнение выглядит так: Q=P/R где Q — колич крови, изгнанное сердцем в мин; Р — величина средн давления в аорте, R — величина сосудис сопротивления, т.к. в месте впадения полых вен в сердце, давление близко к нулю. Отсюда Р = Q*R, т. е. давление (Р) в устье аорты прямо пропорционально объему крови (Q) и величине периферического сопротивления (R). Зная эти величины, вычисляют периферическое сопротивление — важнейший показатель состояния сосудистой системы, кот вычисляется по формуле Пуазейля: R=8lη/πr4 где l — длина трубки; η— вязкость протекающей в ней жидкости; π— отношение окружности к диаметру; r— радиус трубки. Классификация сосудов:1)упруго-растяжимые - сосуды эластического типа (аорта с крупными артериями и легочная артерия с ее ветвями); 2) сосуды сопротивления (резистивные сосуды) — сосуды мышечного типа (артериолы); 3) обменные (капилляры) - сосуды, обеспеч обмен газами и другими веществами между кровью и тканевой жидкостью; 4) шунтирующие (артериовенозные анастомозы) -

сосуды, обеспечивающие «сброс» крови из артериальной в венозную систему сосудов, минуя капилляры; 5) емкостные – вены.

26.Артериальное давление(АД), факторы его определяющие. Максимал и минимальное, пульсовое и среднее давление. Методы их определения. Фазовые колебания величины АД. АД явля одним из ведущ параметров гемодинамики. Оно наиб часто измеряется и служит предметом коррекции в клинике. Факторами, определяющ величину АД, явля объемная скорость кровотока(ОСК) и величина общего периферич сопротивления сосудов(ОПСС). ОСК для сосуд системы является минутным объемом крови (МОК). ОПСС, завис от тонуса сосудов мышечн типа, определяющего их радиус, длины сосуда и вязкости протекающей крови. Наибол величина АД (систолич или макс давление) наблюдается во время прохождения вершины пульсовой волны, а наимен (диастолич или минимал давление) — во время прохождения основания пульсовой волны. Разность между систолич и диастолич давлением - пульсовым давлением. Среднее АД — это равнодейств всех изменений давления в сосудах. Сущест 2 способа определения АД: прямой(инвазивный) и косвенный (бескровный). При прямом АД измеряют путем введения в артерию стеклян канюли (катетера), соедин с манометром трубкой с жесткими стенками. Катетер и соединительную трубку заполняют раствором противосвертывающе в-ва, чтобы кровь в них не свертывалась. Бескровные основаны на измерении АД, нужно подвергнуть стенку сосуда извне, чтобы прекратить по нему ток крови. Для такого исследования применяют сфигмоманометр Рива-Роччи. Обследуемому накладывают на плечо полую резиновую манжету, кот соедин с резинов грушей, служащей для нагнетания воздуха, и с манометром. При надувании манжета сдавливает плечо, а манометр показывает величину давления. Для измерения АД крови с помощью этого прибора, по предложению Н.С. Короткова, выслушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты. Волны 1 порядка (пульсовые) создаются пульсовым давлением. Кроме пульсовых колебаний имеются волны 2 порядка(дыхательные), совпадающ с дыхател движениями: при вдохе АД пониж, а при выдохе — повыш. Волны 3 порядка еще более медленные повышения и понижения давления, каждое из которых охват несколько дыхат волн 2 порядка. Волны обусловлены периодическими изменениями тонуса сосудодвигательных центров.

27. Система быстрой кратковременной регуляции артериального давления и ее механизмы

(барорецепторы). Система обеспечивает быструю нормализацию давления при внезапных отклонениях. Она представлена несколькими регуляторными контурами. Главные из них: а) барорецепторный рефелкс, включ барорецепторы крп артерий – центры голов мозга – эффектор нервы – резистивные, емкостные сосуди и сердце – АД; б) почечный эндокринный контур, включающий почки (юкстагломерулярный аппарат, ренин) – ангиотензин II – резистивные сосуды. Барорецепторный рефлекс вызывается сигналами от рецепторов самих сосудов (в дуге аорты и в области разветвления сонной артерии – сосудистые рефлексогенные зоны). Рецепторы сосудистых зон возбуждаются при повышении давления крови в сосудах, поэтому их называют прессорецепторами или барорецепторами. При отклонении АД от заданной величины включаются компенсаторные реакции, восстанавливающие давление до нормы. Это – регуляция по рассогласованию Существует также регуляция по возмущению. В данном случае компенсаторные механизмы включаются ещѐ до того, как АД изменится, предупреждая его отклонение от нормы. Необходимы для этого реакции запускаются сигналами из миокарда и коронарных сосудов. Барорефлексы достигают максимальной эффективности через 10-30с.

28. Система долгосрочной регуляции АД (прессорный и депрессорный механизмы).

Прессорные – местные системы ренин-ангиотензин II. Локальные механизмы способны оказывать длительное воздействие на резистивные сосуды, регулируя их просвет, ОПСС и, сл-но, АД. Ангиотензин 2 оказывает влияние на баланс ионов Na и воды в организме, увеличивает реабсорбцию Na

впочечных канальцах. При ограничении потребления натрия местные ренин-ангиотензиновые системы играют ведующую роль в поддержании АД. Альдостерон – гормон регуляции АД длительного действия, в основном поддерживающий баланс ионов Na и К и воды.

Депрессорные. Простагландины – ненасыщ циклич жирные к-ты, которые широко представлены в организме человека и вызывают многообразные физиологич эффекты. Простагландины синтезируются

втканях в ответ на разл стимулы. Ведущую роль играет простациклин, образующийся в эндотелии и

гладкомышечных клетках кровеносных сосудов. Он циркулирует в крови, оказывая вазодилатирубщий эффект. Простагландины расширяют сосуды путем противодействий вазоконстрикции, опосредуемой ангиотензином2 и норадреналином. К влиянию простагландинов наиболее чувствительны сосуды скелетных мышц и чревной области, вносящие главный вклад в формирование ОПСС. Калликреинкининовая система подразделяется на два аппарата – плазменный и почечный. Калликреин плазмы способствует отщеплению от кининогена активного сосудорасширяющего пептида брадикинина. Калликреин-кининовая система, функционирующая в почках, существенно отличается от плазменной. Синтезируемый канальциевым эпителием кортикальных сегментов нефрона калликреин поступает в канальцевую жидкость, а затем в мочу. В рез-те взаимодействия калликреина с кининогенами образуется лизил-брадикинин. Повышение концентрации кининов в сосудах почек вызывает усиление почечного кровотока, выделения ионов Na и воды из организма. Допаминергические депрессорные мех-мы. Активация допаминовых рецепторов в окончаниях симпатич нервов вызывает торможение высвобождения норадреналина из депо симпатических терминалей, снижает ЧСС и АД. Депрессорным эффектом сопровождается и стимуляция допаимновых нейронов головного мозга. Собственно сосудистые депрессорные мех-мы. Клетки эндотелия под влиянием хим раздражителей, приносимых кровью, или под влиянием механич раздражения способны выжедять вещества, действующие на гл мыш клетки сосудов, вызывая их сокращение или расслабление. Например, NO. В скелетных мыщцах в процессе расширения сосудов участвует и ацетилхолин, воздействующий через эндотелиальный релаксирующий фактор.Натрийуретические пептиды. Так называемся предсердный натрийуретический фактор синетзируется не только в сердце, но и в ткани головного мозга. Он способен тормозить активацию симпатической нервной системы, образование ренина в почках, секрецию альдостерона и вазопрессина, вазоконстрикцию, задержку натрия и воды, ограничивает повышение АД, вызываемое ангиотензинном 2. Даже при нормальном исходном АД физиологические концентрации предсердного натрийуретического фактора увеличивают диурез и натрийурез, что приводит к снижению АД.

29.Перераспределительные р-ции в с-ме кровообращения при различ физиологич состояниях.

МОК при интенсивной физической работе, может увеличиться не более чем в 5-6 раз, поэтому возраст кровообращения работающ мышц в 100 раз возможно лишь вследствие перераспределения крови.например, во время умственного напряжения усилив кровоснабжение мозга. Напряженная мышеч работа ведет к сужению сосудов пищеварит органов и усиленному притоку крови к работающим скелетным мыщцам. Приток крови к этим мышцам возраст в результате местного сосудорасширяющего действия продукта обмена, образующихся в работующ мышцах, а также вследствие рефлекторного расширения сосудов. Так, при работе одной руки сосуды расширяются не только в этой, но и в друг руке, а также в ниж конечностях. Для обеспечения эффективной деятельности мышц при физич нагрузке необход значит увеличение доставки к работ мышцам кислорода за счет увеличения МОК., возрастание кот происход параллельно. При этом МОК достигает 25-30л, за счет увеличения ЧСС и систолического объема, а также достигается перераспределительными реакциями в системе кровообращения: наряду с расшир сосудов мышц сужаются сосуды брюшной полости.

30. Артериальный пульс, его происхождение, свойства. Методика пальпации пульса. Сфигмография. Анализ кривой артериального пульса. Скорость распространения пульсовой волны. Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период систолы. Обнаруживается на лучевой, височной, наружной артерии стопы и др. Пульсовая волна обусловлена волной повышения давления, возник в аорте в момент изгнания крови из желудочков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим растяжением колебания сосудистой стенки распространяются от аорты до артериол и капилляров где пульсовая волна гаснет. Скорость распр-ия пульсовой волны не зависит от скорости крови и равна у людей молодого и среднего возраста при норм АД и эластичности сосудов в аорте 5,5-8,0 м/с, а в периферических артериях 6,0-9,5 м/с. С возрастом скорость увеличивается. Скорость пульсовой волны определяют посредством чрескожного доплеровского исследования. Для этого одновременно регистрируют кровоток в аорте и в бедренной артерии. Затем рассчитывают среднее время задержки пульсовой волны (t) между точками регистрации

за 10 сокращения. Расстояние D измеряют по пов-ти тела. Скорость равна D/t. Для детального анализа отдельного плуьсового колебания производят его графич регистрацию при помощи сфигмографов, они преобразуют механич колебания сосуд стенки в электрич потенциалы, которые и регистрируют. В сфигмограмме аорты и крупных артерий различают 2 части – подъем и спад. Подъем кривой (анакрота) возникает вследствие повышения АД и растяжения. В конце систолы, когда давление начинает падать, происходит спад пульсовой кривой (катакрота). В тот момент, когда желудочек начинает расслабляться, кровь из аорты устремляется назад к желудочку, давление в аорте резко снижается и на пульсовой кривой появляется глубокая выемка – инцизура. Однако волна крови встречает закрытые клапаны и создает вторичную, или дикротическую, волну. Исследование пульса дает ценную информацию о состоянии ССС. Позволяет оценить как сам факт наличия биений сердца, так и ЧСС, ритм.

31. Объемная скорость кровотока и методы ее определения. Величина кровотока в отдельных органах. Объемная скорость кровотока зависит от развития сосудистой сети в данном органе и интенсивности обмена в нем. Щитов. Железа – 560 мл/мин, почки – 420, печень – 150, сердце (коронар сосуды) – 85, мозг – 65, кишечник 50, мышцы рук и ног в покое – 2-3. Для измерения скорости кровотока предложено несколько методов. Один из совр методов – ультразвуковой: к артерии на небольшом расстоянии друг от друга прикладывают две маленькие пьезоэлектрич пластинки, которые способны преобразов механич колебания в электрич и обратно. На первую пластинку подают электрич напряжение выс частоты. Оно преобраз в ультразвук колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные электрич колебания. Определив как быстро распростр ультразвук колебания против тока крови, можно рассчитать скорость кровотока. Достаточно широкое распространение получил метод электромагнитной флоуметрии. Он основан на принципе электромагнитной индукции. Сосуд располагают между полюсами подковообразного магнита. Кровь, являясь проводящей средой, двигаясь вдоль сосуда, пересекает магнитное поле и создают электродвиж силу, которая направлена перпендикулярно магнитному полю и движению крови. Величина ЭДС пропорциональна напряденности поля и скорости движения в нем крови. Воспринимает ЭДС датчик, выполненный в виде незамкнутого кольца, надеваемого на сосуд. Измеряя ЭДС, определяют скорость движения крови. Объемную скорость кровотока у человека можно измерить посредством плетизмографии. Методика состоит в регистрации изменения объема органа или части тела, в зав-ти от кровенаполнения. При плетизмографии конечность или ее часть заключает в жесткий герметичный сосуд, соедин с манометром для измерения малых колебания давления. В случае изменения кровенаполнения конечности изменяется ее объем, что вызывает увеличение иди уменьшение давления в сосуде, в который помещена конечность. Давление регистрируется манометром и записывается в виде плетизмограммы. Для определения объемной скорости кровотока в конечности на неск секунд перывают венозный отток, сжимая вены. Поскольку приток продолжается, а оттока нет, увеличение объема соответствует кол-ву притекающей крови. Такая методика получила название окклюзионной плетизмографии.

32. Движение крови в капиллярах. Артерио-венозные анастомозы, их значение. Понятие о микроциркуляции, ее роль в обмене жидкостью и другими в-вами между кровью и тканями.

Капилляры представляют собой тончайшие сосуды диаметром 5-7 мкм, длиной 0,5 -1,1 мм. Эти сосуды пролегают в межклеточных пространствах, сообщаясь с клетками органов и тканей организма посредством межклеточной жидкости. Суммарная длина всех капилляров тела человека около 100 000 км. Скорость кровотока в низ 0,5-1 мм/с. В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечение очень велико. Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные). Другие представляют собой боковые ответвления от первых: отходят от артериального конца магистральный капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. В некоторых участках тела, например, в коже, легких и почках, имеются непосредственные соединения артериол и венул – артериоло-венулярные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы открываются, то часть крови может поступать в

вены, минуя капилляры. Анастомозы играют рольшунтов, регулирующих капиллярное кровообращение. Примером этого является изменение капиллярного кровотока в коже при повышении или понижении температуры окруж среды. Анастомозы открываются и устанавливается ток крови из артериол прямо в вены, что играет большую роль в процессах терморегуляции. Микроциркуляция – собирателньое понятие. Оно объединяет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен водой и растворенными в ней газами и веществами между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8-9 тыс. л крови. Через стенку капилляров профильтровывается около 20 л ж-ти и 18л реабсорбируется в кровь. По лимфатич сосудам оттекает около 2л жидкости. Закономерности, обусловливающие обмен ж-ти между капиллярами и тканевыми пространствами, были описаны Старлингом. Гидростатич давление крови в капилляра (Ргк) является основной силой, направл на перемещение ж-ти из капилляров в ткани. Основной силой, удерж ж-ть в капилляре, явл-ся онкотич давл плазмы в капилляре (Рок). Определенную роль играют также гидростатическое далвние (Ргт) и онкотич давление тканевой ж-ти (Рот). На артер конце капилляра Ргк составляет 30-35 ммртст, а на венозном 15-20. Рок на всем протяжении остается постянным и составляет 25 ммртст. Таким образом, на артериальном конце капилляра осуществл-ся процесс фильтрации – выхода ж-ти, а на венозном – реабсорбции. Определенные коррективы в этот процесс вносит Рот, равное примерно 4,5 ммртст, которые удерж ж-ть в тканевых простр-вах, а также отриц величина Ргт (-3 - -9 ммртст). Следовательно, объем ж-ти, переход-ий через стенку капилляра за одну минуту при коэффиц фильтрации К равен: V=(Ргк+Рот+Ргт-Рок)*К. Капилляры различ органов отличаются по своей ультраструктуре, а следовательно по способости пропускать в тканевую жидкость белки. Так, 1л лимфы, образующейся в печени, содержит 60г белка, в миокарде 30г. Белок, проникший в тканевую ж- ть, с лимфой возвращается в кровь.

33. Особ-ти движения крови в венах. Венный пульс. Движение крови в венах обеспечивает наполнение полостей сердца во время диастолы. Ввиду небольшй толщины мышечного слоя стенки вен гораздо более растяжимы, чем стенки артерий. Вены явл-ся резервуаром крови переменной емкости. Давление в венах у человека можно измерить, вводя в поверхностную вену полую иглу и соединяя ее с электроманометорм. Оно равно 5-9 ммртст. В венах грудной полости а также в яремных венах давление близко к атмосферному и колеблется в зав-ти от фазы дыхания. При вдохе, венозное давл понижается, при выдохе повышается. Кровяное русло в венозной части шире, чем в артериальной, в связи с чем скорость кровотока в енах меньше, чем в артериях. В периферич венах 6-14 см/с, в полых венах 20-25 см/с. Движение крови в венах происходит прежде всего вследствие разности давления крови в мелких и крупных венах, т.е. в начале и в конце венозной системы. Однако, существуют дополнит факторы: сокращение скелетных мышц, присасывающее действие грудной клетки. Венный пульс. В мелких и средних венах пульсовые колебания отсутствуют. В крупных венах вблизи сердца отмечаются пульсовые колебания – венный пульс. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. Удобнее всего записывать пульс яремной вены. На флебограмме различают три зубца (а, с, v). Зубец а совпадает с систолой правого предсердия и обусловл тем, что в момент систолы предсердия устья полых вен зажимаются кольцом мышечных волокон, вследствие чего приток крови в предсердия из вен временно приостаналивается. Во время диастолы предсердий доступ в них крови становится вновь свободным, и в это время кривая венного пульса круто снижается. Вскоре на кривой венного пульса появляется небольшой зубец с. Он обусловл толчком сонной артерии, лежащей вблизи яремной вены. После зубца начинается падение кривой, которое сменяется зубцом v. Последний обусловл тем, что к концу систолы желудочков предсердия наполнены кровью, дальнешее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца v набл-ся падение кривой, совпад с диастолой желудочков и поступл в них крови из предсердий.

34. Линейная скорость кровотока. Время кругооборота крови. Линейная скрость кровотока

V=Q/πR2. Время полного кругооборота крови – это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения. Для измерения ВПКК применяют ряд способов, принцип которых заключается в том, что в вену вводят какое-либо безвредное в-во, не встречающееся обычно в

организме, и определяют, через какой промежуток времени оно появл-ся в одноименной вене другой стороны. Скорость кругооборота определяют при помощи радиоактивного изотопа натрия. ВПКК у человека составляет в среднем 27 систол сердца. При ЧСС 70-80 в мин кругооборот крови происходит приблизительно за 23 с., однако скорость движения крови по оси сосуда больше чем у его стенок, поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным. Исследования показали, что 1/5 ВПКК приходится на малый круг кровообращения и 4/5 на большой.

35.Регуляция сосудистого тонуса. Центральные и местные механизмы регуляции. Понятие о базальном тонусе. Гладкомыш элементы стенки кровеносного сосуда постоянно находятся в состоянии умеренного напряжения – сосудист тонуса. Существует три механизма регуляции сосудистого тонуса: ауторегуляция, нервная регуляция и гуморальная регуляция. Ауторегуляция обеспечивает изменение тонуса гладкомышечных клеток под влиянием местного возбуждения. Гладкомышечные клетки стенки сосудов отвечают сокращением на растяжение и расслаблением – на понижение давления в сосудах. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой, которая оказывает сосудосуживающ и сосудорасширяющее действие. Симпатические нервы являются вазоконстрикторами (сужают сосуды) для сосудов кожи, слизистых оболочек, желудочно-кишечного тракта и вазодилататорами (расширяют сосуды) для сосудов головного мозга, легких, сердца и работающих мышц. Парасимпатический отдел нервной системы оказывает на сосуды расширяющее действие. Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны. Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие. Центральные

иместные механизмы регулируют кровообращение. Центральные механизмы определяют величину АД

исистемное кровообращение. Местные механизмы контролируют величину кровотока через отдельные органы и ткани. Гладкие мышцы сосудов постоянно, даже после устранения всех внешних нервных и гуморальных регуляторных влияний на сосуды, находятся на исходном уровне сокращения. Это так называемый базальный тонус. Возникновение его обусловлено тем, что в некоторых участках гладкой мускулатуры сосудистой стенки имеются очаги автоматии, генерирующие ритмические импульсы. Распространение этих импульсов на остальные гладкие мышечные клетки вызывает их возбуждение и создает базальный тонус.

36. Иннервация сосудов. Роль симпатической нервной системы в регуляции тонуса сосудов. Вазоконстрикция и вазодилятация. Понятие об альфа- и бетаадренорецепторах в сосудах. Сужение артерий и артериол, снабженных преимущественно симпатическими нервами (вазоконстрикция), было впервые обнаружено А.П. Вальтером (1842) в опытах на лягушках, а затем К. Бернаром (1852) в экспериментах на ухе кролика. Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна, проходящие в составе внутренностного нерва. После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосуживающей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении внутренност нерва сосуды желудка и тонкой кишки суживаются.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий — в их адвентициальной оболочке. Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов.

Чтобы восстановить нормальный тонус артерий после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в 1 с. Увеличение частоты стимуляции может вызвать сужение артериальных сосудов.

Сосудорасширяющие эффекты (вазодилатация) впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу автономной нервной системы. Например, раздражение барабанной струны вызывает расширение сосудов нижнеподчелюстной и подъязычной желез и языка, n. cavernosi penis — расширение сосудов пещеристых тел полового члена.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]