Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Пожарная безопасность технологических процессов / Artemiev -Pozharnaya bezopasnost tekhnologicheskikh processov. Chast-2 2008

.pdf
Скачиваний:
148
Добавлен:
18.05.2017
Размер:
2.5 Mб
Скачать

Рисунок 3.8 Аппарат с греющей рубашкой.

При нормальном режиме работы внутренний объем всех типов теплообменников полностью заполнен теплоносителем и нагреваемым продуктом, что исключает образование горючей среды внутри таких аппаратов. Горючая среда может образоваться только в помещениях или на открытых площадках при повреждении теплообменников, по причине образования повышенных давлений, температурных воздействий и коррозии.

3.1.1 Требования пожарной безопасности при проведении процессов нагревания водяным паром и эксплуатации теплообменных аппаратов

Специфические требования пожарной безопасности при проведении процессов нагревания водяным паром и эксплуатации теплообменных ап-

паратов (регламентируют [20, 25]):

теплообменные аппараты должны размещаться на открытых площадках с твердым покрытием и уклонами для смывания водой разлившегося продукта;

площадка для теплообменных аппаратов должна ограждаться сплошным бортиком высотой не менее 0,15 м;

теплообменные аппараты должны оборудоваться приборами контроля

ирегулирования температуры и давления;

при эксплуатации теплообменных аппаратов необходимо осуществлять контроль герметичности соединений;

очистка и продувка межтрубного и трубного пространства теплообменных аппаратов должна проводиться водяным паром;

пропитанная горючими веществами теплоизоляция теплообменных аппаратов должна своевременно заменяться;

планово-предупредительных осмотры и ремонт теплообменных аппаратов должны производиться согласно разработанному графику;

теплообменные поверхности аппаратов при их эксплуатации должны своевременно очищаться от отложений;

71

при эксплуатации теплообменных аппаратов необходимо осуществлять контроль содержания горючих веществ в негорючем теплоносителе. Периодичность контроля должна быть указана в производственной инструкции;

не допускается снижение уровня нагрева горючей жидкости в теплообменном аппарате и оголения поверхности теплообмена во избежание ее перегрева;

необходимо соблюдать установленную периодичность контроля состояния трубок, трубной доски и межтрубного пространства кожухотрубных теплообменников. Отглушение неисправных трубок не должно влиять на нормируемые параметры технологического процесса;

разогрев (при пуске) и охлаждение (при остановке) теплообменных аппаратов должны производиться плавно, во избежание повреждения от температурных напряжений;

необходимо контролировать режимы остановки на ремонт и пуска после ремонта. Перед остановкой на ремонт из теплообменного аппарата должна полностью удаляться горючая жидкость.

3.2Пожарная безопасность процессов нагревания высокотемпературными теплоносителями

Впроизводствах химической промышленности для нагрева веществ до температуры 200 − 400 °С используют установки с высокотемпературными теплоносителями (далее − ВТ). Установка для нагревания ВТ (рисунок 3.9) состоит из испарителя 1, в трубчатой системе которого испаряется жидкий ВТ за счет

теплоты, выделяющейся при горении топлива, подаваемого через горелку 5. ВТ по трубопроводу поступают в рубашку аппарата 2, где они отдают теплоту конденсации нагреваемой в аппарате 2 среде. Резервуар 4 предназначен для хранения ВТ, из которого с помощью насоса 3, осуществляется заполнение ВТ всей системы.

Рисунок 3.9 Схема обогрева аппарата периодического действия с использованием ВТ.

72

Циркуляция ВТ может осуществляться естественно либо принудительно. Схемы таких установок приводятся на рисунке 3.10.

Рисунке 3.10 Схемы обогрева с естественной (а) и принудительной (б) циркуляцией высокотемпературных теплоносителей:

1 – печи для нагрева теплоносителя; 2 – теплообменники; 3 – циркуляционные контуры, перемещение жидкости в которых обеспечивается за счет разности ее плотностей в нагретой и охлажденной ветвях (а), или насосом – 4 (б).

ВТ разделяются на три основные группы: органические (далее – ВОТ), ионные и жидкометаллические. К группе ВОТ относятся индивидуальные органические вещества (этиленгликоль, глицерин, нафталин и его производные), продукты хлорирования дифенила и полифенолов и многокомпонентные ВОТ, в том числе ароматизированные и неароматизированные минеральные масла (компрессорное, цилиндровое). Наибольшее применение в технологических процессах в качестве ВОТ получила дифенильная смесь (26,5% дифенила, 73,5% дифенилового эфира), которая обладает высокой термической стойкостью вплоть до температуры кипения. Она не оказывает коррозирующего действия на сталь, поэтому выбор конструкционного материала при ее использовании не представляет трудностей. Смесь неядовитая, горит сильно коптящим пламенем, которую можно погасить струей водяного пара.

Группу ионных высокотемпературных теплоносителей образуют кремнийорганические жидкости (силиконы) и расплавы солей или их смесей. Теплоносители данной группы обычно применяют в жидком состоянии, они отличаются малой токсичностью и агрессивностью по отношению к конструкционным материалам. Предельная температура, определяемая термической стойкостью этих теплоносителей, лежит в области 550 °С.

Для нагревания при атмосферном давлении до температуры 500−540 °С применяют нитрит-нитратную смесь, содержащую 40% NaN02, 7% NaN03 и

53% KN03.

В качестве жидкометаллических ВТ применяют литий, калий, ртуть, сплавы натрия и калия. В качестве ВТ эти металлы применяются в жидком и парообразном состояниях. Среди ВТ жидкие металлы имеют самую высокую термостойкость. Однако они оказывают наибольшее агрессивное воздействие на конструкционные материалы, поэтому верхний температурный предел при-

73

менения жидкометаллических теплоносителей определяется максимально допустимой температурой коррозионной стойкости материала по отношению к данному теплоносителю. Кроме того, пары металлических теплоносителей крайне ядовиты, что ограничивает их применение в технологических процессах.

Основные показатели пожаровзрывоопасности ВТ приведены в таблице 3.1.

Таблица 3.1

Основные показатели пожаровзрывоопасности ВТ

Вид теплоносителя

t плав.,

t кип.

t всп.

t св.

НТПВ

ВТПВ

оС

оС.

оС

оС

оC

оC

Дифенильная смесь

 

 

 

 

 

 

(динил, даутерм)

12

258

115

695

115

130

Ароматизирован-

 

 

 

 

 

 

ное масло АМТ-300

-30

345

176

330

170

229

Мобильторм-600

-30

350

173

340

165

225

Дитомилметан

-30

293

136

500

107

138

Дикумилметан

-22

336

151

425

126

198

Тетрахлордифенил

-7

340

223

704

-

-

Тетрафеноксил-

 

 

 

 

 

 

силан

48

436

250

-

-

-

Трифеноксисило-

 

 

 

 

 

 

ксибензол

22

450

259

-

-

-

 

 

 

 

 

 

 

Из таблицы 3.1 видно, что ВОТ в условиях эксплуатации нагреты значительно выше температуры вспышки, но ниже температуры самовоспламенения.

Весь внутренний объем системы полностью заполнен жидкостью или ее парами, а рабочее давление всегда выше атмосферного. Поэтому взрывоопасные концентрации внутри аппаратов образовываться не могут. Горючая среда может образовываться в топках котлов и в помещениях при прогаре, коррозии и других повреждениях системы.

3.2.1 Требования пожарной безопасности при проведении процессов нагревания веществ высокотемпературными теплоносителями

Требования пожарной безопасности при проведении процессов нагревания веществ ВТ (регламентируют [25]):

− необходимо строго соблюдать рецептуру состава при приготовлении

ВОТ;

не допускается хранение и приготовление нерасплавленных и жидких компонентов ВОТ в котельной с огневым обогревом;

при эксплуатации системы обогрева необходимо следить за циркуляцией теплоносителя, температурным режимом котла и теплообменных аппара-

74

тов. Скорость повышения температуры не должна превышать установленной в инструкции;

должно обеспечиваться удаление летучих веществ, образующихся при разложении ВОТ в процессе эксплуатации установок;

необходимо осуществлять контроль пожароопасных свойств в процессе эксплуатации установки обогрева ВОТ. При обогреве ароматизированным маслом температуру вспышки масла следует проверять не реже одного раза в два дня, а температуру самовоспламенения не реже одного раза в месяц;

во избежание перегрева жидкости, ее разложения и прогара теплообменной поверхности аппаратов, уровень теплоносителя в аппарате должен быть не ниже установленного предела;

системы обогрева должны быть оборудованы устройствами аварийного слива ВОТ.

3.3Пожарная безопасность процессов нагревания пламенем

итопочными газами

Вмашиностроительной, металлургической, нефтяной и химической промышленности при перегонке нефти и мазута, термическом и каталитическом крекингах, пиролизе, дегидрировании, гидроочистке углеводородов, разгонке каменноугольных и древесных смол и т.п. для нагревания веществ до темпера-

тур 1000 − 1100 °С применяется огневой обогрев (нагревание пламенем и топочными газами). Топочные газы также используются для нагрева промежуточных теплоносителей (горячей воды, водяного пара), которые затем используются в теплообменной аппаратуре в качестве теплоносителей.

Для нагревания пламенем и топочными газами применяются трубчатые печи. Печи по принципу действия могут быть непрерывного или периодического действия; пламенного горения или беспламенного горения и могут работать на газообразном или жидком топливе. Все трубчатые печи имеют принципиально одинаковое устройство (рисунок 3.11). Основными элементами трубчатой печи являются каркас, кирпичная кладка; форсунки, горелки; трубы и двойники.

Внутренний объем печи разделяется перевальной стенкой 10 на камеры А и Б. Камера А называется радиантной (передача тепла в ее пространстве осуществляется главным образом радиацией за счет теплового излучения пламени, горячих продуктов горения и раскаленных поверхностей стенок печи), а камера Б – конвекционной (передача тепла от топочных газов осуществляется конвекцией). Камера А представляет собой топку, в которой монтируются топливные форсунки. Количество форсунок зависит от мощности печи и может быть от 4 до 16 и более.

75

Рисунок 3.11 Схема устройства трубчатой печи:

1 – корпус печи; 2 – радиантные трубы; 3 – конвекционные трубы; 4 – подача водяного пара в змеевик (против ококсования); 5 – кольцо из труб с отверстиями для создания паровой завесы; 6 – трубы для паротушения; 7 – предохранительные дверцы; потолочный экран; 9 – подвески; 10 – перевальная стенка; 11 – трубы паротушения;

12 – конвекционные трубы; 13 – крепление труб.

В радиантной и конвекционной камерах размещены трубы теплообменной поверхности. Все трубы последовательно соединяются в один непрерывный змеевик. Трубы секций соединены последовательно фасонными отливками

– так называемыми двойниками или ретурбендами, вынесенными в специальные короба. Двойники позволяют не только соединять концы двух соседних труб, но и производить очистку их внутренних поверхностей, а также заменять поврежденные трубы новыми, не нарушая соседних соединений. Двойники могут иметь различное устройство.

Жидкое и газообразное топливо, подводимое к форсункам, сгорает в камере радиации, выделяя большое количество тепла. Из радиантной камеры дымовые продукты поступают в конвекционную камеру, а затем в боров и дымовую трубу. В зависимости от назначения печи температура в зоне сгорания топлива может доходить до 750 − 1400 °С. Температура дымовых продуктов при выходе из радиантной камеры колеблется около 800 − 900 °С, а при выходе из конвекционной камеры в боров она примерно на 150 − 200 °С выше температуры поступающего в печь сырья. Жидкость, подлежащая нагреву, насосами подается в трубы конвекционной камеры и, проходя последовательно все трубы, нагревается до заданной температуры.

Пожарная опасность трубчатых печей характеризуется постоянной циркуляцией по змеевикам значительного количества горючей жидкости, нагреваемой до высокой температуры (выше температуры самовоспламенения) и находящейся под большим внутренним давлением, а также наличием в топочном пространстве источников открытого огня. Одновременно в змеевиках трубчатой печи может находиться до 3 − 15 т горючей жидкости, находящейся под большим давлением и при высокой температуре. При выходе наружу из печи продукт сразу же воспламенится, если его температура превышает температуру

76

самовоспламенения. В противном случае продукт может интенсивно испаряться и воспламенится после того, как пары его будут затянуты в топочное пространство. Растекаясь по площадке и попадая в траншеи и канализацию, горящий продукт приводит к распространению огня на соседние аппараты и даже на соседние установки.

Попадая из змеевиков внутрь печи, продукт вызывает интенсивное горение, которое может привести к деформации труб змеевика, обрушению стен и свода, повреждению дымовых каналов и дымовой трубы. В этом случае огонь и дым будут выбиваться из всех отверстий наружу, и перегревать каркас, вызывая его деформацию.

При эксплуатации трубчатых печей возможны: взрывы в топочном пространстве; пожары в топочном пространстве; пожары вне печи. Причины взрывов в топочном пространстве печей различны. Главным образом взрывы в топочном пространстве трубчатых печей могут происходить при розжиге форсунок.

Пожары в топочном пространстве печей возникают чаще всего в результате прогара или разрыва труб. Повреждение труб змеевика представляет собой одну из наиболее сильных аварий печи.

Трубопроводы, находящиеся в печи, подвержены неравномерному тепловому воздействию. Средняя температура в радиантной камере примерно равна 950 − 1000 °С, а в конвекционной камере – 500 − 600 °С. Следовательно, стенки радиантных труб нагреваются до более высокой температуры, чем стенки конвекционных труб.

Высокая температура поверхности трубопровода вызывает термическое разложение прилегающих к ней слоев жидкости. В результате термического разложения образуется твердый пористый продукт – кокс, отлагающийся на поверхности трубы. Чем выше температура, тем интенсивнее коксообразование. Коксообразование в трубах зависит не только от температурного режима работы, но и от скорости движения продукта по трубам.

Сильный химический или механический износ материала труб может привести к их разрыву даже при нормальном давлении и тем более это возможно при повышенных давлениях.

Причиной усиленной коррозии металла с внешней стороны труб (со стороны топочного пространства) является нарушение нормального режима топки, т.е. работа с повышенным коэффициентом избытка воздуха, с избытком топлива или работа на повышенных температурных режимах против нормального.

Усиленную коррозию металла с внутренней стороны труб, т.е. со стороны продукта, вызывает наличие в нагреваемой жидкости повышенного количества вредных химических примесей.

Внутреннее давление в системе повышается при нарушении нормального режима работы насосов, подаче продукта поршневыми насосами в ококсованные змеевики, неисправности редукционного клапана и т.п.

Интенсивное горение внутри топочного пространства, своего рода пожар, возникает также при попадании в печь горючей жидкости через газовые форсунки. При работе газовых форсунок, особенно в зимнее время, в газовой линии

77

может образоваться значительное количество конденсата, который вместе с газом будет поступать в топку. Попадание жидкости в топку вызывает выброс огня через имеющиеся проемы наружу и резкий скачок температуры в печи, что приводит к частичному ококсовыванию труб.

Наличие открытого огня, раскаленной кладки и высокой температуры поверхности труб и двойников делают трубчатые печи весьма опасными и мощными источниками зажигания для соседних аппаратов с горючими веществами.

Распространение пожара происходит: при аварии, когда под большим давлением выбрасывается наружу струя горячего продукта, которая сразу воспламеняется, или загазовывает территорию и, воспламенившись, дает вспышку в большом объеме воздуха, повреждая соседние аппараты; при повреждении коммуникаций, по излившемуся топливу, пропитанной мазутом теплоизоляции труб и загрязненной площадке перед форсуночным фронтом.

3.3.1 Требования пожарной безопасности при проведении процессов нагревания в трубчатых печах

Требования пожарной безопасности процессов нагревания в трубча-

тых печах (регламентируют [25]):

при организации теплообменных процессов с огневым обогревом необходимо предусматривать меры и средства, исключающие возможность образования взрывоопасных смесей в нагреваемых элементах, топочном пространстве и рабочей зоне печи;

для противоаварийной зашиты топочного пространства нагревательные печи должны оснащаться системами регулирования заданного соотношения топлива, воздуха и водяного пара; блокировками, прекращающими поступление газообразного топлива и воздуха при снижении их давления ниже установленных параметров; средствами сигнализации о прекращении поступления топлива и воздуха при принудительной подаче в топочное пространство; средствами контроля за уровнем тяги и автоматического прекращения подачи топливного газа в зону горения при остановке дымососа или недопустимом снижении разрежения в печи, а при компоновке печных агрегатов с котламиутилизаторами – системами по переводу работы агрегатов без дымососов; средствами подачи в топочное пространство веществ, исключающих возможность взрыва;

не допускается эксплуатация печей с отключенными и неисправными системами противоаварийной защиты топочного пространства и нагревательных элементов;

противоаварийная защита нагреваемых элементов (змеевиков) нагревательных печей должна обеспечиваться: аварийным освобождением змеевиков печи от нагреваемого жидкого продукта при повреждении труб или прекращении его циркуляции; блокировками по отключению подачи топлива при прекращении подачи сырья; средствами дистанционного отключения подачи сырья

итоплива в случаях аварий в системах змеевиков; средствами сигнализации о падении давления (расхода) в системах подачи сырья;

78

необходимо следить за состоянием теплообменной поверхности печи

ипри опасности повреждения немедленно принимать меры, предотвращающие ее прогар или разрыв;

необходимо осуществлять надзор за состоянием кладки, труб, трубных подвесок и опор печи. В случае неисправности подвесок, деформации кладки, наличия свищей эксплуатация печи не допускается;

подтяжку зажимных болтов для уплотнения пробок двойников можно производить только после снижения давления в трубах до атмосферного;

устройства для опорожнения печей от нагреваемых горючих жидкостей при аварии и пожаре должны содержаться в исправном состоянии;

шкафы двойников трубчатых печей должны иметь исправные, плотно закрывающиеся металлические дверцы;

пуск печи необходимо производить, соблюдая установленную инструкцией последовательность операций;

к розжигу горелок допускается приступать только после продувки топливного газопровода инертным газом и внутреннего объема печи водяным паром;

на трубопроводах подачи жидкого и газообразного топлива на расстоянии не ближе 5 м от печи должна быть установлена задвижка, позволяющая одновременно прекращать подачу топлива ко всем форсункам;

для изоляции печей с открытым огневым процессом от газовой среды, при авариях на наружных установках или в зданиях, печи должны быть оборудованы паровой завесой, включающейся автоматически и дистанционно. При включении завесы должна срабатывать сигнализация;

между печами и открытыми взрывопожароопасными установками следует размещать закрытые здания с непожароопасной технологией, используемые в качестве защитных экранов.

3.4 Пожарная безопасность процессов охлаждения веществ и материалов

Отдельные процессы химической технологии протекают в условиях, когда возникает необходимость отвода теплоты, например при охлаждении газов, жидкостей или при конденсации паров. Охлаждение осуществляют с помощью охлаждающих теплоносителей (охлаждающих агентов) в результате протекающего между ними и охлаждаемой средой теплообмена. Наиболее распространенными хладагентами являются вода и воздух, но наряду с ними используют и другие теплоносители – в частности, низкотемпературные жидкости. Охлаждение водой используют для достижения температур охлаждаемой среды на уровне 10 − 30 °С. При этом, достигаемая температура охлаждения зависит от начальной температуры воды. Охлаждение водой осуществляют главным образом в поверхностных и оросительных теплообменниках (холодильниках). Оросительный теплообменник (рисунок 3.12) представляет собой змеевик из размещенных друг над другом прямых труб 1, соединенных между собой калачами

79

2. Снаружи трубы орошают водой, которую подают в желоб 3 для равномерного распределения охлаждающей воды по всей длине верхней трубы змеевика. Отработанная вода поступает в корыто 4 для сбора воды. По трубам протекает охлаждаемый теплоноситель. Орошающая теплообменник вода при перетекании по наружным стенкам труб частично испаряется.

Рисунок 3.12 Оросительный холодильник.

Воздух применяют в смесительных теплообменниках−градирнях, являющихся основным элементом оборудования водооборотного цикла. Воду, используемую в процессах охлаждения различных технологических потоков на предприятиях промышленности, после прохождения через соответствующие теплообменные устройства собирают в сборник − накопитель, а затем подают для охлаждения на градирни. Градирни (рисунок 3.13) представляют собой полые башни, в которых сверху разбрызгивается теплая вода, а снизу вверх движется воздух (за счет естественной тяги или нагнетается вентилятором 5). Расположенная внутри градирни насадка 2 служит для увеличения поверхности контакта между водой и воздухом. Горячая вода в градирне охлаждается как за счет контакта с холодным воздухом, так и в результате так называемого испарительного охлаждения в процессе испарения части потока воды. Отходящая с градирен вода может быть повторно использована для охлаждения технологических потоков.

Рисунок 3.13 Градирни с естественной (а) и принудительной (б) тягой:

1 – поддоны; 2 – слои насадки; 3 – распределители охлаждающей воды, 4 – полая часть градирни, 5 – осевой вентилятор; 6 – брызгоотбойник.

80