Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Криволинейные интегралы.doc
Скачиваний:
37
Добавлен:
07.12.2018
Размер:
1.49 Mб
Скачать

2. Определение криволинейного интеграла II типа

Пусть в плоскости задана спрямляемая кривая и вдоль нее определена функция f(x;y). Кривую разобьем произвольно на частей точками , . На каждой частичной дуге выберем произвольную точку . Обозначим через xk и уk проекции дуги на оси координат, xk=xk -xk-1, yk=yk-yk-1. Разбиение обозначим через . Составим сумму

. (4)

(4) – интегральная сумма для функции f(x;y) на кривой AB по координате x. Пусть , - длина частичной дуги .

Определение 1. Число I называется пределом интегральной суммы при , если выполнено . Обозначается: .

Определение 2. Если существует конечный предел интегральной суммы при , не зависящий ни от способа разбиения кривой АВ, ни от выбора точек , то он называется криволинейным интегралом по координате х от функции f(x;y), взятым по кривой AB. Функция называется интегрируемой вдоль кривой AB по координате х, если для нее вдоль этой кривой существует криволинейный интеграл по x.

Обозначается: .

Таким образом, .

Аналогично определяется криволинейный интеграл от функции f(x;y) по координате y, взятый по кривой AB:

.

Криволинейные интегралы по координатам x и y называются криволинейными интегралами II типа.

Если вдоль кривой AB две функции P(x;y) и Q(x;y), и существуют , , то сумма этих интегралов также называется криволинейным интегралом II типа (общего вида) и обозначается:

.

Физический смысл криволинейного интеграла II типа

Из задачи о работе плоского силового поля и определения криволинейного интеграла II типа следует, что криволинейный интеграл II типа общего вида

,

то есть выражает работу силы по перемещению материальной точки по кривой из точки А в точку В.

Замечание 1. Определенный интеграл является частным случаем криволинейного интеграла II типа. Пусть кривая АВ - это отрезок AB=[a;b] оси Ox. Тогда f(x;y)=f(x;0)=F(x). Поэтому на [a;b]

.

В правой части – обыкновенная интегральная сумма для функции F(x) на [a;b]. Переходя к , получим

.

Аналогично, если кривая AB является некоторым отрезком [c;d] оси Oy, то , где (y)=f(0;y), y[c;d].

Замечание 2. Если на кривой AB поменять направление интегрирования на противоположное, то и знак криволинейного интеграла II типа изменится на противоположный. Это происходит потому, что в интегральных суммах изменяется знак . Таким образом, криволинейные интегралы II типа от одной и той же функции f(x;y), взятые по одной и той же кривой АВ, но в противоположных направлениях, равны по модулю, но противоположны по знаку:

,

.

Следовательно, при вычислении криволинейных интегралов II типа необходимо учитывать направление интегрирования. Из двух направлений на кривой одно считают положительным, а другое – отрицательным.

Если кривая замкнута и представляет собой контур, ограничивающий некоторую область на плоскости (это будет в случае, если замкнутая кривая не имеет кратных точек), то за положительное направление принимают обычно направление против хода часовой стрелки, а за отрицательное – по ходу часовой стрелки. Но для некоторых областей такой способ задания направления непригоден. В этом случае положительным направлением считают такое направление обхода контура, когда ограниченная им область (Р) остается все время слева. Интеграл по замкнутому контуру L обозначается: . Иногда с помощью стрелки указывают направление обхода:

или .