Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_1-42.doc
Скачиваний:
3
Добавлен:
16.04.2019
Размер:
3.47 Mб
Скачать

Вопрос 13 о бобщённый закон Ома, закон Джоуля-Ленца для участка цепи. Правила Кирхгофа.

Вопрос 14 Законы Фарадея для электролиза. Закон Ома для плотности тока в электролите.

Законы Фарадея для электролиза

Электрический ток в электролитах сопровождается явлением электролиза – выделением на электродах составных частей растворенных веществ или других ве-ществ, являющихся результатом вторичных реакций на электродах. Для явления электролиза справедливы два закона Фарадея.

Первый закон Фарадея: масса M вещества, выделившегося на электродах, прямо пропорциональна электрическому заряду Q, прошедшему через электролит.

M=kQ=kIt

где k – электрохимический эквивалент.

Второй закон Фарадея: электрохимический эквивалент вещества k пропорционален отношению молярной массы A ионов этого вещества к их валентности z.

где F = 96486,7 Кл / моль – число Фарадея.

З акон Ома для плотности тока в электролите.

Вопрос 15 Электропроводность газов. Виды газового разряда

В естественном состоянии газы не являются проводниками электрического тока. Для получения электрического тока в газе его необходимо ионизировать, то есть создать в нем носители заряда. При ионизации молекул газа образуются положительно и отрицательно заряженные ионы и свободные электроны. Следовательно, носителями тока в газах являются ионы и электроны. Процесс, обратный ионизации, называется рекомбинацией. При рекомбинации ионы и электроны вновь объединяются, образуя нейтральные молекулы. Постоянный электрический ток в газе возможен лишь тогда, когда процессы ионизации превалируют над процессами рекомбинации. Протекание электрического тока в газе называют газовым разрядом. Различают несамостоятельный и самостоятельный газовые разряды. Для поддержания несамостоятельного газового разряда требуется внешний ионизатор. Внешними ионизаторами могут служить ультрафиолетовые и рентгеновские лучи, пучки быстрых заряженных частиц, ионизирующие излучения радиоактивных веществ (α- ,β-, γ- лучи); нагрев газа до высокой температуры (термическая ионизация). Самостоятельный газовый разряд поддерживается за счет внутренних процессов ионизации, которые протекают в газе при приложении электрического поля.

Вопрос 16 Границы применимости закона Ома. Плазма.

Границы применимости закона Ома

Согласно закону Ома, сила тока прямо пропорциональна приложенному напряжению, т. е. вольт-амперная характеристика представляет собой линейную функцию и сопротивление R не зависит от U. Если же это не так (закон Ома не выполняется), то вольт-амперная характеристика нелинейная.

Запишем закон Ома в другом виде. Для этого введем величину плотности тока , где S — площадь сечения проводника. Тогда Здесь ρ — удельное сопротивление проводника, величина называется удельной проводимостью, L — длина проводника, — напряженность электрического поля. Закон Ома предполагает линейную связь между плотностью тока j и напряженностью электрического поля Е. Если же проводимость а по какой-то причине зависит от величины электрического поля, то зависимость j от Е становится нелинейной, и закон Ома нарушается.

  1. Эта формула называется формулой Друде. Закон Ома справедлив, если ни одна из величин, входящих в формулу Друде, не зависит от Е. Если же концентрация электронов n или время свободного пробега τ, или эффективная масса m* изменяются под действием электрического поля, то закон Ома нарушается.

  2. в полупроводниках в очень сильных полях Е плотность тока увеличивается быстрее, чем по линейному закону. В интервале Ea < E < Eb имеется падающий участок, вызванный уменьшением τ и возрастанием m* в сильном электрическом поле, и, наконец, в области E > Eb происходит быстрый рост j из-за увеличения n.

  3. Эффект Ганна. прикладывая к полупроводнику постоянное напряжение U0, мы получаем переменный ток частоты напряжение U0 такое, чтобы оказаться на падающем участке зависимости j(Е).

  4. при больших токах возникает достаточно большое магнитное поле внутри проводника. На электрон, движущийся в магнитном поле, действует сила Лоренца, искривляющая его траекторию.

  5. Диоды, транзисторы. Их специально делают неоднородными

  6. Сверхпроводники где R=0

Плазмой называется сильно ионизованный газ, в котором концентрации положительных и отрицательных зарядов практически одинаковы. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде. Плазма характеризуется степенью ионизации a — отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины a говорят о слабо (a составляет доли процента), умеренно (a — несколько процентов) и полностью (a близко к 100%) ионизованной плазме.

Заряженные частицы (электроны, ионы) газоразрядной плазмы, находясь в ускоряющем электрическом поле, обладают различной средней кинетической энергией. Это означает, что температура Тe электронного газа одна, а ионного Tи, — другая, причем Тe>Tи. Несоответствие этих температур указывает на то, что газоразрядная плазма является неравновесной, поэтому она называется также неизотермической. Убыль числа заряженных частиц в процессе рекомбинации в газоразрядной плазме восполняется ударной ионизацией электронами, ускоренными электрическим полем. Прекращение действия электрического поля приводит к исчезновению газоразрядной плазмы.

Высокотемпературная плазма является равновесной, или изотермической, т. е. при определенной температуре убыль числа заряженных частиц восполняется в результате термической ионизации. В такой плазме соблюдается равенство средних кинетических энергий составляющих плазму различных частиц.

Условием существования плазмы является некоторая минимальная плотность заряженных частиц, начиная с которой можно говорить о плазме как таковой. Эта плотность определяется в физике плазмы из неравенства L>>D, где L—линейный размер системы заряженных частиц, D —дебаевский радиус экранирования, представляющий собой то расстояние, на котором происходит экранирование кулоновского поля любого заряда плазмы.

Плазма обладает следующими основными свойствами: высокой степенью ионизации газа, в пределе — полной ионизацией; равенством нулю результирующего пространственного заряда (концентрация положительных и отрицательных частиц в плазме практически одинакова); большой электропроводностью, причем ток в плазме создается в основном электронами, как наиболее подвижными частицами; свечением; сильным взаимодействием с электрическим и магнитным полями; колебаниями электронов в плазме с большой частотой (»108 Гц), вызывающими общее вибрационное состояние плазмы; «коллективным» — одновременным взаимодействием громадного числа частиц (в обычных газах частицы взаимодействуют друг с другом попарно).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]