Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory2.doc
Скачиваний:
12
Добавлен:
28.04.2019
Размер:
7.46 Mб
Скачать

1. Характеристики прочности материалов

2. Предел упругости это максимальное напряжение, вызывающее только упругие деформации, т.е. напряжение, прикотором остаточная деформация практически равна нулю

3. Предел текучести σТ - это напряжение, при котором материал деформируется (течет) без заметного увеличения нагрузки. Для пластичных материалов это напряжение соответствует площадке текучести на диаграмме растяжения (рис. 8, а). Для малопластичных материалов, не имеющих площадкитекучести, используется условный предел текучести σ0,2.

Условный предел текучести σ0,2 - это напряжение, вызывающее остаточную пластическую деформацию 0,2% от первоначальной длины образца

4. Предел прочности или временное сопротивление σв – напряжение, соответствующее максимальной нагрузке, которая предшествует разрушению образца: σВ=Pmax/F0.

Напряжение σ-1, при котором материал может выдержать неограниченное количество циклов, не разрушаясь, называется пределом выносливости материала при симметричном цикле нагружения.

2Характеристики упругих и пластических свойств машиностроительных материалов

Характеристики пластичности материалов

1. Относительное удлинение - это отношение удлинения образца к его первоначальной длине под действием растягивающей нагрузки:

где l0 и lк –начальная и конечная длины образца.

2. Относительное сужение – это отношение уменьшения площади поперечного сечения образца в месте разрыва к начальной площади поперечного сечения под действием растягивающей нагрузки:

где F0 и Fк – соответственно, начальная и конечная площади поперечного сечения.

При этом полная деформация в точке А равна: где   - упругая деформация,   - пластическая (остаточная деформация)

При растяжении образца происходит не только увеличение его длины, но и уменьшение размеров поперечного сечения, т. е. в упругой области деформация в поперечном направлении  , где e - деформация в продольном направлении, m - коэффициент Пуассона

модуль упругости ( );

3.Критерии качества деталей и узлов машин:

Качество – совокупность св-в изделия, определяющих степень его пригодности для использования по назначению.

3.1.Критерии работоспособности.

Работоспособность – это состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями нормативно – технической документации.

Основными критериями работоспособности являются:

- прочность;

- жесткость;

- износостойкость;

- теплостойкость;

- виброустойчивость.

Ж есткость – это способность конструкции и ее элементов сопротивляться изменениям формы и размеров. Например, при недостаточной жесткости валов в зубчатой передаче может возникнуть прогиб, который приводит к неравномерности распределения нагрузки по зубьям колес из-за уменьшения площади контакта и заклиниванию подшипников качения из-за перекоса валов (пример см. рис. 2.1.).

Недостаточная жесткость деталей влияет на их взаимное расположение в механизмах, вызывает в подвижных сопряжениях повышенное трение, давление, температуру и др.

Расчет конструкций на жесткость.

Различают объемную жесткость (брус, пластина, оболочка) и контактную жесткость, т. е. жесткость, связанную с контактными деформациями поверхностных слоев в местах контакта деталей.

Объемная жесткость оценивается коэффициентом жесткости:

,

где - сила; - вызванная силой деформация.

Величина обратная жесткости называется податливостью:

Факторы, влияющие на жесткость:

- модуль упругости (Е, G);

- геометрические характеристики сечения детали (площадь, момент инерции и др.);

- вид нагрузки и типы опор.

Методы повышения жесткости:

- устранение изгиба (т.к. металлы лучше работают (воспринимают) растяжение-сжатие);

- рациональный выбор материалов деталей (применение материалов с высоким модулем упругости ( );

- рациональное расположение и изменение количества опор (что приводит к уменьшению прогиба и плеч изгибающих моментов; см. рис. 2.2.);

- выбор рациональной формы поперечного сечения детали;

- применение в конструкции ребер жесткости (что приводит к изменению геометрических характеристик сечения деталей);

- рациональное расположение опор (добавление)

Виброустойчивость – способность конструкции работать в диапазоне режимов, достаточно далеких от области резонанса (резонанс - совпадение или кратность частоты вынужденных колебаний и частоты собственных колебаний).

Вибрации снижают качество работы машин, увеличивают шум, усиливают изнашивание, вызывают дополнительные переменные напряжения в деталях и усталостное разрушение.

Расчеты на виброустойчивость сводятся к определению частот собственных колебаний механической системы и обеспечению их несовпадения с частотой вынужденных колебаний.

Для снижения колебаний:

-применение разл. Амортизаторов (демферов)

-увеличение силы инерции в системе за счет введения маховиков

Теплостойкость – способность конструкции работать в пределах заданных температур в течение заданного срока службы.

Нагрев деталей в процессе работы машины приводит к:

- снижению механических характеристик материала и к появлению пластических деформаций (при температуре свыше 300 );

- уменьшению зазоров в подвижных сопряжениях деталей, что приводит к схватыванию, заеданию, заклиниванию;

- снижению вязкости масла (т. е ухудшаются смазочные свойства масляного слоя).

Для обеспечения нормального теплового режима работы должен быть обеспечен тепловой баланс, т. е. сравнивают количество выделенной теплоты с количеством отведенной теплоты в единицу времени: ;

определяют рабочую температуру и сравнивают с допускаемой:

.

Если условия не выполняются, то применяют:

- искусственное охлаждение,

- проектируют охлаждающие ребра,

- увеличивают размеры корпуса;

- заменяют пары скольжения парами качения;

- применяют материалы с малым коэффициентом линейного расширения.

Износостойкость – свойство материала оказывать сопротивление изнашиванию. Изнашивание - процесс разрушения и отделения материала с поверхности тела при трении, который приводит к постепенному изменению размеров и формы.

Существуют различные виды изнашивания:

- усталостное изнашивание. При контакте деталей в них возникают контактные напряжения . В результате циклического нагружения на трущейся поверхности 1 образуются усталостные микротрещины 2. Смазочный материал, попадая в микротрещины, способствует их расклиниванию 3 и выкрашиванию частиц 4 металла, в результате чего на поверхности детали появляются мелкие ямки

- абразивное изнашивание. Это разрушение поверхностных слоев материала трущихся пар твердыми абразивными частицами. Зерна абразива могут попадать на трущиеся поверхности извне, содержаться в материале трущихся пар или в продуктах износа. Методы борьбы: упрочнение поверхностей;

- водородное изнашивание. При работе узлы трения нагреваются, идет выделение водорода, который оседает на поверхности материала и проникает вглубь детали, вызывая охрупчивание, и образование микротрещин. Методы борьбы: использовать стали легированные хромом, титаном, ванадием; снижение температуры в зоне контакта;

- молекулярно-механическое изнашивание. При больших давлениях происходит разрушение защитных масляных пленок на поверхностях сопряженных деталей. Отдельные участки поверхности могут вступить в молекулярный контакт. Происходит схватывание, а последующее перемещение поверхностей вызывает разрушение мест соединений (возникают задиры и борозды). Методы борьбы: повышение твердости за счет термообработки, использование специальных смазок, применение покрытий;

-коррозионно-механическое знашивание (фреттинг-коррозия). Разрушение поверхности происходит под действием: коррозии и механического изнашивания. Возникает при очень малых относительных перемещениях (колебаниях) сопряженных поверхностей. Методы борьбы: уменьшение относительных смещений, поверхностное упрочнение, гальванопокрытия, напыление.

Износ вызывает:

- потери точности;

- снижение КПД;

- увеличение шума;

- увеличение вибрации;

- увеличение зазоров.

Меры борьбы с изнашиванием:

- замена сухого трения жидкостным (хорошее смазывание);

- увеличение твердости (например, закалка снижает износ в 2 раза) и чистоты обработки поверхностей;

- подбор материалов трущихся пар (например, использование антифрикционных материалов).

Прочность – это способность конструкции и ее элементов выдерживать внешние воздействия (нагрузки) без разрушения и появления недопустимых остаточных деформаций. Прочность является важнейшим критерием работоспособности. Ему должны удовлетворять все детали.

Расчеты элементов конструкции на прочность будем осуществлять:

1). С помощью метода допускаемых напряжений. Т.е. определяют максимальные напряжения в опасном сечении и сравнивают их с допускаемыми, используя условие прочности :

- при растяжении и сжатии;

- при сдвиге;

- при кручении;

- при изгибе.

2). С помощью определения коэффициента запаса прочности. Т.е. прочность деталей машин оценивают сравнением действительного коэффициента запаса прочности s рассчитываемой детали с допускаемым коэффициентом запаса прочности : .

Коэффициент запаса прочности, показывает во сколько раз допускаемое напряжение больше опасного (для пластичных материалов , для хрупких ).

Методы повышения прочности:

- механическое упрочнение (обкатка роликами, обдувка дробью и др.);

- закалка ТВЧ;

- химическое упрочнение (цементация, азотирование, цианирование);

- термо-механическое упрочнение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]