Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_Uyminu (2).doc
Скачиваний:
7
Добавлен:
29.04.2019
Размер:
388.1 Кб
Скачать

36. Видеоподсистема. Состав. Принципы вывода изображений на экран (жк).

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД, англ. Liquid crystal display, LCD), также жидкокристаллический монитор (ЖК-монитор) — плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

LCD TFT (англ. Thin film transistor — тонкоплёночный транзистор) — разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель для каждого субпикселя применяется для повышения быстродействия, контрастности и чёткости изображения дисплея.

Жидкокристаллические дисплеи были разработаны в 1963 году в исследовательском центре Дэвида Сарнова компании RCA (Принстон, штат Нью-Джерси).

Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.

Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

37.

38.

39.

40. Сравнительный анализ ЖК-мониторов и мониторов на основе ЭЛТ.

Отсутствует мерцание, присущее ЭЛТ всвязи с постоянным перерисовыванием экрана. На ЖК-дисплее пиксели занимают строго определенное, фиксированное положение, и цвет их менятся только в том месте экрана, где на "картинке" происходит движение. Если вы, работая в "Ворде" стукаете по клавише с литерой "а", то из всех миллионов пикселей, которые присутствуют на экране, лишь несколько поменяют цвет, там где появится буква "а". Причем, заметим, поменяют цвет, а не дернутся куда-то в сторону, хотя бы и на микроскопическую величину.

Никаких проблем связанных со сведением лучей. У цветного ЭЛТ-монитора не одна, а три пушки, каждая на свой цвет, и которые посылают каждая по лучу, возникает проблема настроек по сведению и фокусировке лучей, идеально ничего не бывает, а потому опять страдает качество изображения. В ЖК-мониторе каждый пиксель расположен в фиксированной матрице и "знает свое место", .

Бликов на экране ЖК монитора в несколько раз меньше. Коэффициент отражения света от поверхности ЖК монитора в три и более раз меньше, чем от поверхности кинескопа с самым совершенным на сегодняшний момент антибликовым покрытием (Sony FD Trinitron, Mitsubishi Diamondtron NF).

Теперь о других важных преимуществах жк перед элт

  • ЖК-монитор не создает вокруг себя очень вредного для здоровья человека постоянного электростатического потенциала, так как имеет нулевой постоянный потенциал дисплея, потому что не обстреливается из электронной пушки.

  • Малый вес ЖК-монитора. ЖК-монитор это тонкая пластина со стойкой, которая нужна, чтбы зафиксировать ЖК-пластину в удобном положении. ЭЛТ-монитор - это ящик в котором нужно разместить орудие для стерльбы электронами и мишень. А потому вес сундука в 17 дюймов таков, что российское законодательство запрещает его поднимать как милым секретаршам, так и серьезным бухгалтершам. Пять или шесть килограммов ЖК-дисплея по зубам и язвенникам и трезвенникам, застарелый радикулит не напомнит о себе, если вы передвинете его с одного места на столе на другое. Да и само место на столе лишним никогда не бывает, чтобы занимать его под артиллерийскую систему.

  • ЖК-монитор потребляет раза в три-четыре меньше электроэнергии, чем ЭЛТ, что может оказться важным показателем в ряде случаев, например для тесных офисов.

41. Плоскопанельные мониторы. Плазменные дисплеи, органические светодиодные мониторы. Принцип действия, преимущества и недостатки

Газоразрядный экран (также широко применяется английская калька «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечениялюминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме.

Работа плазменной панели состоит из трех этапов:

  1. инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей — завершение упорядочивания.

  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

  3. подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

42. Видеоадаптеры. Назначение, функции и типы, режимы работы и характеристики

Видеоадаптер (видеокарта) является компонентом видеосис­темы ПК, выполняющим преобразование цифрового сигнала, циркулирующего внутри ПК, в аналоговые электрические сигна­лы, подаваемые на монитор. По существу, видеоадаптер выпол­няет роль интерфейса между компьютером и устройством отобра­жения информации (монитором).

Режимы работы видеоадаптера, или видеорежимы, представля­ют собой совокупность параметров, обеспечиваемых видеоадап­тером: разрешение, цветовая палитра, частоты строчной и кадро­вой развертки, способ адресации участков экрана и др.

Все видеорежимы делятся на графические и текстовые. Причем в различных режимах видеоадаптера используются разные механизмы формирования видеосигнала, а монитор в обоих режимах работает одинаково.

43.

44.

45. Современные видеоадаптеры NVIDIA и ATI.

NVIDIA Corporation (NASDAQ: NVDA) — американская компания, один из крупнейших разработчиков графических ускорителей и процессоров для них, а также наборов системной логики. На рынке продукция компании известна под такими торговыми марками как GeForce, nForce, Quadro, Tesla, Ion и Tegra.

Компания была основана в 1993 году. По состоянию на август 2006 года в корпорации насчитывалось более 6 тысяч сотрудников, работающих в 16 офисах по всему миру.Штаб-квартира компании находится в городе Санта-Клара, штат Калифорния (США). Основные конкуренты — компании ATI (AMD), Intel.

NVIDIA не имеет собственного производства и размещает заказы на мощностях других компаний. В роли постоянного партнера для производства своих чипов NVIDIA использует компанию TSMC.

ATI Technologies — канадская компания, разработчик и поставщик графических процессоров и чипсетов материнских плат, действовавшая с 1985 по 2006 год как самостоятельная компания, являющаяся одной из крупнейших в своей отрасли.

В 2006 году компания ATI была приобретена корпорацией AMD и перешла в ее состав как графическое подразделение AMD Graphics Products Group; продукция ATI продолжала выпускаться под прежним брендом. C конца 2010 года вся продукция выпускается под маркой AMD.[1] Основные конкуренты — компании Nvidia, Intel.

46. Мультимедийные проекторы. Принцип действия и классификация. Принципиальные схемы TFT и полисиликоновых проекторов. Технические характеристики.

Проектор — световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Проекторы являются в основном оптико-механическими или оптическо-цифровыми приборами, позволяющими при помощи источника света проецировать изображения объектов на поверхность, расположенную вне прибора — экран. Появление проекционных аппаратов обусловило возникновение кинематографа, относящегося к проекционному искусству.

47. Классификация печатающих устройств

Классификацию принтеров можно выполнить по целому ряду характеристик:

  1. способу формирования символов (знакопечатающие и знак о синтезирующие);

  2. цветности (черно-белые и цветные);

  3. способу формирования строк (последовательные и параллельные);

  4. способу печати (посимвольные, построчные и постраничные)

  5. скорости печати;

  6. разрешающей способности.

Принтеры обычно работают в двух режимах: текстовом и графическом.

48. Матричные принтеры. Принцип действия. Механические узлы. Технические характеристики.

В матричных принтерах (Dot-Matrix-Printer) изображе­ние формируется несколькими иголками, расположенными в го­тике принтера. Иголки обычно активизируются электромагнит­ным методом. Каждая ударная иголка приводится в движение независимым электромеханическим преобразователем на основе иненоида.

49. Струйные принтеры. Принципы работы, основные узлы, особенности работы, основные параметры, правила эксплуатации.

Первой фирмой, изготовившей струйный принтер, является Hewlett-Packard.

По принципу действия струйные принтеры отличаются от матричных безударным режимом работы за счет того, что их печата­ющая головка представляет собой набор не игл, а тонких сопел, параметры которых составляют десятые доли миллиметра. В этой же головке установлен резервуар с жидкими чернилами, как микрочастицы, переносятся на материал носителя. Хранение чернил обеспечивается двумя конструктивными реше­ниями. В одном из них головка принтера объединена с резервуа­рам для чернил, причем замена резервуара с чернилами одновре­менно связана с заменой головки. Другое предусматривает использование отдельного резервуара, который через систему капилляров обеспечивает чернилами головку принтера.

50. Лазерные принтеры. Принцип действия, функциональная схема, особенности работы, основные характеристики, правила эксплуатации

Лазерные способы печати основаны на освещении заряженной светочувствительной поверхности промежуточного носителя и формировании на ней изображения в виде электростати­ческого рельефа, притягивающего частицы красителя, которые переносятся на бумагу. Принцип действия лазерного принтера основан на методе сухого электростатического переноса изображения, изобретенном Ч.Ф.Карлсоном в 1939 г. и реализуемом также в копировальных аппаратах. Основным элементом конструкции является вращающийся барабан, служащий промежуточным носителем, с помощью которого производится перенос изображения на бумагу.

51. Принтеры. Принцип формирования цветного изображения (струйные и лазерные принтеры).

Цветное изображение с помощью лазерного принтера получается по стандартной схеме CMYK, используемой в струйных принтерах. В цветном лазерном принтере изображение формируется на светочувствительной фотоприемной ленте последовательно для каждого цвета. Имеются четыре емкости для тонеров и от двух до четырех узлов проявления. Лист печатается за четыре прохода, что существенно сказывается на скорости печати. Цветные лазерные принтеры оборудованы большим объемом памяти, процессором и, как правило, собственным винчестером. На винчестере располагаются разнообразные шрифты и специальные программы, которые управляют работой, контролируют состояние и оптимизируют производительность принтера. В результате цветные лазерные принтеры достаточно сложны и дорогостоящи.

Таким образом, лазерный черно-белый принтер рекомендуется использовать для получения высококачественной черно-белой распечатки, а для цветного изображения оптимальным является применение цветного струйного принтера.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]