Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kse ot 70.docx
Скачиваний:
6
Добавлен:
31.07.2019
Размер:
91.58 Кб
Скачать

70

Главными исходными соединениями для синтеза сложных молекул служат вода и углекислый газ. Именно из них под действием солнечного света в зеленых клетках растений образуются сложные органические соединения, обладающие запасом химической энергии.   

Первая стадия образования органических веществ из неорганических под действием света носит название фотосинтеза и в самом элементарном виде выражается схемой:

СO2 + H2O → Питательные вещества (углеводы) + O2

Понятие «фотосинтез» — это целая цепь реакций от поглощения исходных реагентов и световой энергий до образования органических веществ. Эта цепь длинная и сложная. Мы не стремимся описать полностью процесс фотосинтеза, дадим лишь упрощенное представление об основных этапах этого сложного процесса и внешних условиях, влияющих на ход реакций.

71?

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кисло рода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки — до аминокислот и липиды — до жирных кислот. В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию.

Почти все окислительные реакции происходят в митохондриях, а высвоболедаемая энергия запасается в виде макроэргического соединения — АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

72

Благодаря круговоротам веществ конечное количество вещества, имеющееся в биосфере, приобретает свойство бесконечности.

Глобальный круговорот веществ складывается из отдельных круговоротов (воды, химических элементов), к которым подключаются грандиозные перемещения воздушных масс, тектонические процессы, обусловленные вулканической деятельностью и движением океанических плит.

Круговорот веществ возможен только на основе постоянного притока солнечной энергии и осуществляется при участии живого вещества. Поступая в организмы из окружающей среды, различные элементы вовлекаются в процессы клеточного метаболизма, затем возвращаются в среду и вновь используются организмами. Благодаря этому биосфера функционирует как целостная, саморегулирующаяся, сохраняющая постоянство система.

Основными элементами глобального круговорота являются углерод, водород, кислород, азот, фосфор, сера. Круговороты этих и других элементов называют биогеохимическими циклами. В ходе таких циклов большинство элементов проходят через живое вещество огромное число раз.

Круговороты различных элементов имеют разную скорость. Например, весь кислород атмосферы проходит через живое вещество за 2.000 лет, а вода - за 2.000.000 лет.

Циклы круговоротов элементов не замкнуты. Некоторая часть вещества биосферы, благодаря способности организмов накапливать различные химические элементы, выходит из круговорота веществ, накапливается в глубоких слоях земной коры. Из каждого цикла высвобождается незначительное число элементов, но в связи с длительностью геологической истории таких циклов насчитывают множество. Это приводит к накоплению огромного количества ископаемых органических веществ.

Круговорот углерода. Углерод входит в состав углекислого газа, который содержится в воздухе и воде. Фактически круговорот углерода идет по двум циклам - континентальному и океаническому. Объединение между этими циклами происходит через углекислый газ атмосферы.

Углекислый газ поглощается продуцентами, преобразуется в процессе фотосинтеза в органические соединения, которые затем усваиваются консументами. Вместе с тем, происходит обратный процесс: углекислый газ образуется при дыхании организмов и разложении мертвого вещества (остатков растений и животных) редуцентами. То есть углерод в составе углекислого газа вновь возвращается в атмосферу.

Углерод в составе углекислоты также поступает в окружающую среду из мантии Земли при извержении вулканов, с выхлопными газами автомашин, с дымовыми выбросами заводов и фабрик, при сгорании горючих ископаемых.

Часть углерода выходит из общего круговорота веществ, что привело в геологическом прошлом к накоплению таких ископаемых, как торф, уголь, нефть, газ, известняки.

В естественных циклах баланс углерода нулевой. Однако деятельность человека приводит к тому, что содержание углекислого газа в атмосфере ежегодно повышается (  на 3 млрд. т), возникаетпарниковый эффект - чрезмерное поглощение воздухом теплового излучения Земли. Вследствие этого может произойти глобальное потепление климата, резкое повышение уровня Мирового океана в результате таяния ледников. Это, в свою очередь, может привести к затоплению густонаселенных приморских районов и возрастанию опустынивания в центральных частях континентов.

Биохимические циклы:

Химические элементы циркулируют в биосфере характерными путями из внешней среды в организм и снова во внешнюю среду. Процессы движения химических элементов, которые происходят с участием живого вещества, называются биогеохимическими циклами. Движение необходимых для жизни элементов и неорганических соединений можно назвать круговоротом элементов питания.

Относительно биосферы, биогеохимические циклы можно разделить на два основных типа:

  • круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере;

  • осадочный цикл с резервным фондом в земной коре.

Из газообразных круговоротов рассмотрим два глобальных круговорота - углерода и воды. Они имеют очень большое значение для человечества. От изменений, происходящих в этих круговорот, зависит будущее человечества на Земле. Также обратим внимание на некоторые другие газообразные биогеохимические циклы.

Круговорот углерода в природе

Углекислый газ поступает в атмосферу за счет дыхания всех организмов. Второй его источник - выделение по трещинам земной коры из осадочных пород благодаря химическим процессам. Можно считать, что этот СO2тоже имеет биогенное происхождение. Часть углекислого газа поступает в атмосферу из мантии Земли во время вулканических извержений. Это 0,01% всего СО2, выделяемого живыми организмами. Кроме СO2, в атмосфере присутствуют в небольшом количестве СО (0,1 части на миллион) и СН4 - 1,6 части на миллион. Эти соединения, как и СO2, находятся в быстром круговороте: 0,1 года для СО; 3,6 года для СН4 и 4 года для СО2. СО и СН4образуются при неполном или анаэробном разложении органических соединений. В дальнейшем в атмосфере они окисляются до СО2. Сегодня запасы углерода в атмосфере оценивают в 700 млрд. тонн, а в гидросфере - 50 000 млрд. тонн. Годовой фотосинтез составляет для атмосферы 30 млрд. тонн и для гидросферы - 150 млрд. тонн. Исходя из этих цифр, время кругооборота СО2 составляет 300-400 лет. Количество СО2 в атмосфере не уменьшается, его запасы постоянно увеличиваются за счет дыхания, брожения, сведение лесов, распашки почв, сгорания. С увеличением содержания СО2 в атмосфере связана глобальная экологическая проблема - потепление климата.

Круговорот воды в природе

Часть этого круговорота осуществляется за счет энергии Солнца, в других частях круговорота энергия освобождается и может быть использована экосистемами и гидроэлектростанциями. Около трети энергии Солнца, поступающей к Земле, затрачивается на круговорот воды. Интересны два аспекта круговорота воды:

  • Море теряет из-за испарения больше воды, чем получает с осадками, на суше ситуация противоположная. В некоторых районах планеты 90% осадков приносится с моря (долина Миссисипи).

  • В результате деятельности человека сток увеличивается, а пополнение фонда грунтовой воды сокращается. Вода в некоторых районах становится, как и нефть, невосстанавливающимся ресурсом.

Подробнее про круговорот воды изложено здесь.

Круговорот кислорода в природе

Атмосферный кислород накоплен за счет фотосинтеза. Единственный источник абиогенного поступления свободного кислорода - фотолиз воды в верхних слоях атмосферы. В природе существует два фундаментальных процесса, противоположных друг другу, - это фотосинтез у растений и дыхание. Количество молекул O2, которые выделяют зеленые растения, пропорционально количеству связывающихся молекул СО2. Кислород, выделяющийся во время фотосинтеза, идет на дыхание живых существ и на окисление углерода при минерализации органических соединений. Накопление кислорода в атмосфере планеты началось еще с докембрия. В дальнейшем концентрация кислорода возрастала и достигла сегодня 21%. Увеличение кислорода в атмосфере в далекие геологические времена можно рассматривать как огромную экологическую катастрофу. Поскольку большинство прокариотов кембрия и палеозоя не были приспособлены к повышению концентрации кислорода, то они освободили место для других таксонов.

Теперь вкратце рассмотрим осадочные круговороты. Большинство элементов и соединений «привязаны» к Земле, и их круговороты входят в общий осадочный цикл. Циркуляция в таком цикле осуществляется путем эрозии, горообразования, вулканической деятельности, образование осадка. К осадочным циклам относят круговорот фосфора, серы, натрия, кальция.

73

Первоисточником энергетического потока, проходяще­го сквозь все пищевые цепочки в биосфере, служит энер­гия солнечного электромагнитного излучения, попадающая на поверхность Земли в видимом диапазоне (свет). Финалом преобразований в пищевых цепочках является освобождение энергии в виде тепла при переработке микробами органичес­ких остатков. Вся высвободившаяся в процессе жизнедеятель­ности в биосфере энергия возвращается поверхностью Земли в мировое пространство главным образом в виде электромаг­нитного излучения инфракрасного диапазона

74

Переход от неживой материи к живой произошел, по-видимому после того, как на базе предшественников возникли и развились зачатки двух основополагающих жизненных систем: системы обмена веществ и системы воспроизведения материальных основ живой клетки. Как это произошло – пока трудно даже предполагать. В современных организмах обе жизненные системы достигли высочайшего уровня совершенства. Одна и та же физико-химическая основа таких систем всех земных организмов независимо от степени их сложности указывает на то, что древо жизни выросло из одного черенка.

Назначение обмена веществ – поддерживать равновесное состояние живого организма. Такая довольно сложная задача решается путем отбора веществ, из которых синтезируются нужные организму соединения. С другой стороны, эта система выводит из организма все то, что не может быть им усвоено или что появляется как шлак от процессов жизнедеятельности. Система обмена обеспечивает взаимосогласованные в высшей степени биохимические реакции синтеза и расщепления белков. Можно только завидовать тому, как экономно, надежно и точно осуществляет природа функцию обмена во всех живых системах – от простейшей клетки до высших организмов. Не случайно многие ученые с давних времен стремятся создать лабораторию живого организма.

Система воспроизведения содержит в закодированном виде полную информацию для построения из запасенного клеткой органического вещества нужного в данный момент белка. Она же управляет механизмом извлечения и реализации программной информации. Свои функции система воспроизведения осуществляет посредством полимерных соединений – полинуклеотидов. Здесь ключевая роль принадлежит дезоксирибонуклеиновой кислоте (ДНК) и рибонуклеиновой кислоте (РНК). ДНК хранит генетическую информацию, а РНК воспроизводит ее и переносит в среду, содержащую необходимые для синтеза белка исходные вещества.

В последнее время в изучении механизмов работы основополагающих жизненных систем достигнуты определенные успехи. Однако остается открытым вопрос: как в ходе эволюции могли образоваться из неживого вещества такие высокоорганизованные, тонко подогнанные системы обмена веществ и воспроизведения? Время для ответа на этот вопрос еще не настало.

Существует, кроме того, пока необъяснимое, различие физических свойств живого и неживого вещества, отражающее особенность процесса возникновения жизни на Земле. С точки зрения физики отличительной особенностью органических соединений, порожденных жизнью, является их оптическая активность – способность поворачивать плоскость поляризации проходящего через них света в одном направлении – либо влево, либо вправо, в зависимости от конкретного типа соединений. Так, все белковые молекулы земных организмов поворачивают плоскость поляризации проходящего света влево, что указывает на их левую пространственную конфигурацию (L-конфигурацию), а молекулы нуклеиновых кислот ДНК и РНК – только вправо, т. е. обладают правой или D-конфигурацией. В то же время неживое вещество подобного химического состава представляет собой смесь с равновероятным содержанием молекул обеих конфигураций, поэтому поворота плоскости поляризации проходящего через них света не происходит. Предполагается, что оптическая активность органических соединений живых организмов имеет прямое отношение к происхождению жизни.

Сохранение в процессах, связанных с жизнью, органических молекул только одной из двух возможных пространственных структур, называют хиральностью, а соответствующие им молекулы – хиральными. Хаотическая же смесь органических молекул обеих пространственных конфигураций называют рацематом, который возникает при абиогенном синтезе органических молекул. Вне сомнений в преджизненный период образования органических соединений на Земле возникал только рацемат. При переходе к жизни в органических соединения вдруг произошла сортировка молекул и появилась хиральность. Как это произошло, почему в белках отсортировались молекулы с L - конфигурацией, а в ДНК и РНК - молекулы с D - конфигурацией? На эти вопросы пока ответа нет, но высказывается предположение, основанное на процессе самоорганизации в природе: переход от рацемата к хиральности произошел не в ходе эволюционного, а в результате скачка со всеми характерными  чертами самоорганизации материи. Есть другая точка зрения. Ее выдвинул Л. Пастер (1822-1895), французкий микробиолог, первооткрыватель оптической активности вещества живых организмов. Суть ее в том, что зеркальная ассиметрия живых систем следует некоторой ассиметрии Вселенной. Отдавая должное широте взглядов ученого, еще в прошлом веке связавшего жизнь и космос в единое целое, отметим: ассиметрия Вселенной нарушала бы симмерию любого органического вещества, от его происхождения. Точку зрения Пастера пытались развить, выдвигая  предположения о существовании каких-то агентов, оказывающих  ассиметричное воздействие на вещество организмов. Однако обнаружить таких агентов пока не удалось. 

75

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]