Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8 МЕХАНИКА.doc
Скачиваний:
18
Добавлен:
01.08.2019
Размер:
591.87 Кб
Скачать

8.3 Вибрационные воздействия на систему с одной степенью свободы

Случай силового возбуждения

Рассмотрим модель, изображенную на рисунке 8.2,б. Кроме возбуждающей силы P=P0sinwt в этой МС действующая сила инерции , сила упругости пружины Pу=kz и диссипативная сила (сила демпфирования) .

Имеется два случая: свободные и для вынужденные колебания.

Для свободных колебаний при отсутствии демпфирования (величина коэффициента демпфирования (затухания) =0) колебания описываются выражением:

, (8.2)

где – частота свободных колебаний;

– амплитуда свободных колебаний;

Vмгновенная (начальная) скорость, которая была сообщена массе m в момент времени t=0.

Частота w0 не зависит от начальных условий (от начальной скорости V) и определяется только собственными параметрами МС (k и m), поэтому она получила название собственной частоты. С увеличением массы или с уменьшением жесткости пружины k, частота w0 уменьшается. Амплитуда колебаний зависит от начальных условий (от V).

Для реальных МС коэффициент ¹0 (он обычно находится в пределах 0,02…0,3). В этом случае колебания системы будут совершаться по закону:

, (8.3)

где собственная частота с демпфированием.

Учитывая, что величина близка к нулю, на практике считают w1 =w0.

В ыражение (8.3) описывает затухающее колебание с периодом (рис. 8.5).

Рис. 8.5

Более точное представление о процессе затухания колебаний дает величина логарифмического декремента затухания: , где - период затухающих колебаний.

При вынужденных колебаниях на МС постоянно воздействует внешняя сила Р. В этом случае колебательный процесс описывается выражением:

Второе слагаемое в этом выражении – это перемещение при вынужденных колебаниях:

, (8.4)

В последних двух формулах используются параметры:

- статический прогиб упругого элемента

- коэффициент динамичности МС (др. название - коэффициент динамического усиления при силовом возбуждении колебаний);

- коэффициент частотной расстройки;

j - начальная фаза вынужденных колебаний.

С течением времени (t®¥) колебания МС устанавливаются, а их амплитуда становится равной zв=mZст, откуда m = zв /Zст.

Коэффициент динамичности m системы показывает, как в зависимости от частотной расстройки изменяется амплитуда вынужденных колебаний относительно ее статического смещения Zст.

Из формулы (8.4) следует, что амплитуда перемещения при вынужденных колебаниях зависит не только от параметров МС и возмущающей силы, но и от частоты w. Зависимость коэффициента динамичности m от частоты расстройки является амплитудно-частотной характеристикой (АЧХ) системы при силовом возбуждении (рис. 8.6).

Рис. 8.6 - Зависимость коэффициента динамичности от частотной расстройки при различной степени затухания колебаний.

На частоте возникает резонанс, при котором амплитуда вынужденных колебаний достигает максимальной величины. В этом случае коэффициент динамичности равен добротности механической системы Q:

,

где относительный коэффициент демпфирования (затухания) МС;

Для типовых конструкций известны ориентировочные значения m: для микроблоков пенального типа – около 40, для цифровых ячеек на металлических рамках – 10...25, для ячеек на платах из стеклотекстолита – 5...12.

Случай кинематического возбуждения

Предположим, что на основание действует гармоническая сила P и оно перемещается также по гармоническому закону zа=Zаsinwt, где Zа - амплитуда виброперемещения основания.

Для этого случая выражение для определения амплитуды колебаний системы имеет вид:

, (8.5)

Величина носит название коэффициента передачи системы (др. название - коэффициент динамического усиления при кинематическом возбуждении системы). Этот параметр определяет АЧХ системы при кинематическом возбуждении (рис. 8.7).

Рис. 8.7 - Зависимость коэффициента передачи МС от частотной расстройки при различной степени затухания колебаний.

Пример. Слабо демпфированная конструкция печатного узла закреплена в четырех точках по углам. В местах крепления (на входе) плата совершает колебания с максимальной амплитудой равной 0,025 мм, а в ее центре (на выходе) при резонансе ПУ вибросмещение достигает 2,5 мм. Следовательно, коэффициент передачи системы h = 2,5:0,025 = 100.

Как видно из рисунка 8.7, коэффициент передачи h становится меньше 1, если значение расстройки u превышает . Эта закономерность лежит в основе широко используемого на практике способа защиты ЭС, который называется виброизоляцией.

8.4 Критерии вибропрочности РЭС

В общем виде условиями (критериями) обеспечения вибропрочности конструкции являются:

1) отсутствие в конструкции механических резонансов;

2) ограничение амплитуды виброперемещения и виброскорости значениями, исключающими опасные напряжения и усталостные явления в элементах конструкции;

Механические резонансы для конструкций РЭС очень опасны, т.к. при их возникновении многократно возрастают нагрузки на элементы в системе. Поэтому при разработке конструкции стремятся «вывести» собственные частоты ее элементов за пределы диапазона частот внешних воздействий. При расчетах на вибропрочность в первую очередь проверяется выполнение условия:

0 >в (или ω < ),

где 0 - собственная частота элемента;

в, - верхняя и нижняя частоты внешних воздействий.

С проверки этих неравенств обычно начинается оценка вибропрочности отдельных ЭРЭ, печатных узлов, микросборок, блока в целом.

В системах с несколькими степенями свободы ситуация осложняется возможностью существования совместных резонансов. Понятие совместного резонанса характеризует условия, когда две системы, объединенные вместе или связанные между собой, одновременно колеблются на частотах, близких к резонансной. Часто бывает так, что увеличенное за счет резонанса смещение на выходе первой системы является входным воздействием для второй системы, которая вторично усиливает это смещение. Например, если у конструкции, изображенной на рисунке 5.3 коэффициент передачи шасси равен 50, а у печатных узлов также 50, то общий коэффициент передачи объединенной системы необходимо определять следующим образом: = 50 50 = 2500. Если такое случится в реальной системе, как часто и бывает, вибропрочность системы окажется весьма низкой.

Совместные резонансы в большинстве случаев удается исключить, применяя так называемое «правило октавы». Оно рекомендует в системах с последовательным соединением упругих масс удваивать собственную частоту каждого элемента, вносящего дополнительную степень свободы. Например, если в системе на рисунке 5.3 собственная частота шасси равна 50 Гц, то у каждого ПУ собственная частота должна быть как минимум вдвое выше (не менее 100 Гц). Это разнесение резонансных частот предотвращает усиление колебаний в системе, что в конечном итоге увеличивает ее усталостную долговечность.

Для проверки выполнения второго условия сначала необходимо определить допустимое напряжение, которое может выдержать элемент конструкции

,

где  - предельное значение напряжения (предел прочности) для материала, который берется из справочника;

n – запас прочности.

Механические напряжения, при которых образец из данного материала разрушается или в нем возникают значительные остаточные деформации, называют предельными.

Для пластичных материалов (медь, алюминий и др.) в качестве предельных обычно принимают предел текучести. Для хрупких материалов (ситалл, стекло, стеклотекстолит и др.) в качестве предельных механических напряжений принимают [в] – предел прочности, значение которого при растяжении и сжатии различно. При расчетах можно принять:

- для алюминиевых сплавов типа АЛ5 [] 196 МПа,

- для стеклотекстолита [ ] 105МПа.

Величина запаса прочности задается в пределах 1,5...6,8 в зависимости от степени ответственности детали, достоверности определения расчетных нагрузок и напряжений и др. факторов.

При механических воздействиях на конструкцию могут возникать напряжения связанные с изгибом, кручением и растяжением-сжатием ее элементов. Однако для РЭС, как правило, наиболее опасны изгибные колебания. В этом случае напряжение на изгиб должно отвечать следующему условию

,

где Ми – изгибающий момент в наиболее опасном сечении элемента конструкции;

Wu – момент сопротивления при изгибе.

Как уже отмечалось, при знакопеременных напряжениях после некоторого числа циклов нагружения может наступить поломка элемента из-за усталости в материале. В основе усталостных повреждений лежит процесс образования и развития микротрещин в наиболее нагруженном сечении, приводящий, в конечном счете, к разрушению элемента конструкции.

Чаще всего в РЭС разрушаются выводы ЭРЭ при наступлении в них высокочастотных резонансов. Если известно максимальное напряжение в выводах, то по кривой усталости для материала (рис. 8.8) можно определить число циклов до разрушения и, таким образом, сделать прогноз долговечности изделия.

Рис. 8.8 – Кривые Велера для меди и алюминия.

Время работы элемента до разрушения выводов можно определить по формуле

,

где Np - число циклов нагрузки до разрушения;

f01 - частота свободных колебаний основного тона элемента.

На практике достаточно произвести расчеты вибропрочности только для самых «слабых» элементов конструкции. К ним можно отнести выводы слабо закрепленных ЭРЭ, тонкопроводные монтажные соединения, элементы типа пластин (платы, панели) и др.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]