Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_k_biletam_po_fizike.doc
Скачиваний:
30
Добавлен:
06.08.2019
Размер:
1.3 Mб
Скачать

Момент силы и импульса относительно оси

Момент силы (синонимы: крутящий момент; вращательный момент; вертящий момент; вращающий момент) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью. Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса относительно оси — скалярная величина.

Момент инерции материальной точки

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости). Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: . Центральный момент инерции (или момент инерции относительно точки O) — это величина ,где:  — масса малого элемента объёма тела dV,  — плотность,  — расстояние от элемента dV до точки O.

Уравнение моментов для материальной точки

J=mr^2

L – момент импульса

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости). Центральный момент инерции (или момент инерции относительно точки O) — это величина ,где:  — масса малого элемента объёма тела dV,  — плотность,  — расстояние от элемента dV до точки O.Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции:

Тело

Описание

Положение оси a

Момент инерции Ja

Материальная точка массы m

На расстоянии r от точки, неподвижная

Полый тонкостенный цилиндр (кольцо) радиуса r и массы m

Ось цилиндра

Сплошной цилиндр (диск) радиуса r и массы m

Ось цилиндра

Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1

Ось цилиндра

Сплошной цилиндр длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его середину

Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его середину

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его середину

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его конец

Тонкостенная сфера радиуса r и массы m

Ось проходит через центр сферы

Шар радиуса r и массы m

Ось проходит через центр шара

Конус радиуса r и массы m

Ось конуса

Уравнение моментов для системы тел

Момент инерции для системы тел равен сумме всех моментов, относящихся к этому телу.

Вращение твёрдого тела вокруг фиксированной оси

Вращением вокруг неподвижной оси называется такое движение твердого тела, при котором во все время движения две его точки остаются неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, по окружностям, центры которых лежат на оси вращения. Положение вращающегося твердого тела определяется одним параметром - углом φ между начальным положением АМ0О некоторой плоскости, связанной с телом и проходящей через ось, и ее положением АМО в данный момент времени (рис. 1).

Расчёт моментов инерции твёрдых тел

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости). Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Момент инерции стержня

- Ось перпендикулярна к стержню и проходит через его середину

- Ось перпендикулярна к стержню и проходит через его конец Момент инерции кольца

Ось цилиндра Полый тонкостенный цилиндр (кольцо) радиуса r и массы m

Теорема Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями: Если  — момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерции относительно параллельной оси, расположенной на расстоянии от неё, равен , где  — полная масса тела. Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Пример расчёта момента инерции системы тел

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

J=Jc+Jш = 1/3ml^2 + 2/5mr^2+m(l+r)^2. Дан подвешенный стержен. На конце шар. (воздушный шарик)

Закон сохранения момента импульса

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Работа силы при вращательном движении

Работа при вращательном движении твердого тела. Рассчитаем работу силы, вызывающей вращательное движение тела вокруг некоторой оси и приложенной к произвольной точке этого тела. Согласно определению работы имеем: dA = F·ds = Ft·ds. 

Поскольку ds = r·da, то получим следующее выражение для работы: dA = Ft·r·da = M·da. При вращательном движении твердого тела под действием силы F работа равняется произведению момента этой силы на угол поворота. Работа переменной силы при повороте тела на конечный угол равняется определенному интегралу от момента сил:   . Покажем, работа, совершаемая под действием равнодействующего момента сил, равна изменению кинетической энергии тела. Действительно, dA = M·da = I·e·da = I·(dw/dt)·w·dt = I·d(w2/2), где M - суммарный момент всех сил, действующих на тело. Произведя интегрирование по углу, получим:  A12 = I·w22/2 - I·w12/2 = DEк.

Кинетическая энергия вращательного тела

Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением. Основные кинематические характеристики вращательного движения тела — его угловая скорость (ω) и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z: Kz = Izω и кинетическая энергия где Iz — момент инерции тела относительно оси вращения.

Кинетическая энергия тела, совершающего плоское поступательно-вращательное движение

Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением. Основные кинематические характеристики вращательного движения тела — его угловая скорость (ω) и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z: Kz = Izω и кинетическая энергия где Iz — момент инерции тела относительно оси вращения.

При плоском движении кинетическая энергия движущегося твердого тела равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, проходящей через центр масс тела и перпендикулярной плоскостям, в которых движутся все точки тела:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]