Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ot_S_41-60.doc
Скачиваний:
4
Добавлен:
29.08.2019
Размер:
522.24 Кб
Скачать

44.Теоретичні основи горіння. Різновиди горіння

Горіння — це екзотермічна реакція окислення речовини, яка супроводжується виділенням диму та (або) виникненням полум'я і (або) свічення. Для виникнення горіння необхідна наявність горючої речовини, окислювача та джерела запалювання. Розрізняють два види горіння: повне — при достатній кількості окислювача, і неповне — при нестачі окислювача. Продуктами повного горіння є діоксид вуглецю, вода, азот, сірчаний ангідрид та ін. При неповному горінні утворюються горючі і токсичні продукти (оксид вуглецю, альдегіди, смоли, спирти та ін.). За швидкістю розповсюдження полум'я горіння поділяється надефлаграційне (в межах 2—7 м/с), вибухове (при десятках і навіть сотнях метрів за секунду) і детонаційне (при тисячах метрів за секунду).

Горіння може бути гомогенним та гетерогеним. При гомогенному горінні речовини, що вступають в реакцію окислення мають однаковий агрегатний стан, наприклад газоподібний. Якщо при цьому горюча речовина та окислювач не перемішані, то відбувається дифузне горіння, при якому процес горіння лімітується дифузією окислювача через продукти згоряння до горючої речовини. Якщо початкові речовини знаходяться в різних,агрегатних станах і наявна межа поділу фаз в горючій системі, то таке горіння називається гетерогенним. Гетерогенне горіння, при якому одночасно утворюються потоки горючих газоподібних речовин, є одночасно й дифузним. Як правило, пожежі характеризуються гетерогенним дифузним горінням, швидкість переміщення полум'я якого залежить від швидкості дифузії кисню повітря до осередку горіння. Горіння – це екзотермічна реакція окиснення речовини, яка супроводжується виділенням диму та (або) виникненням полум'я та (або) світінням. Для виникнення горіння необхідна наявність горючої речовини, окисника та джерела запалювання.

Розрізняють два види горіння: повне – при достатній кількості окисника, і неповне – при його пониженій кількості. Продуктами повного горіння є діоксид вуглецю, вода, азот, сірчаний ангідрид та ін. При неповному горінні утворюються горючі та токсичні продукти (монооксид вуглецю, альдегіди, смоли, спирти та ін.). За швидкістю поширення полум'я горіння поділяється на дефлаграційне (в межах 2-7 м/с), вибухове (при десятках і навіть сотнях метрів за секунду) і детонаційне (при тисячах метрів за секунду).

Горіння може бути гомогенним та гетерогенним. При гомогенному горінні речовини, що вступають у реакцію окиснення мають однаковий агрегатний стан, наприклад газоподібний. Якщо при цьому горюча речовина та окисник не перемішані, то відбувається дифузне горіння, при якому процес горіння лімітується дифузією окисника через продукти горіння до горючої речовини. Якщо початкові речовини знаходяться в різних агрегатних станах і наявна межа поділу фаз у горючій системі, то таке горіння називається гетерогенним. Гетерогенне горіння, при якому одночасно утворюються потоки горючих газоподібних речовин, є одночасно й дифузним. Як правило, пожежі характеризуються гетерогенним дифузним горінням, швидкість переміщення полум'я якого залежить від швидкості дифузії кисню повітря до осередку горіння.

Розрізняють наступні різновидності горіння: вибух, детонація, спалах, займання, спалахування, самозаймання, самоспалахування, тління.

Вибух – надзвичайно швидке хімічне перетворення, що супроводжується виділенням енергії й утворенням стиснених газів, здатних виконувати механічну роботу. В основному, ця механічна робота зводиться до руйнувань, які виникають при вибуху і обумовлені утворенням ударної хвилі – раптового скачкоподібного зростання тиску. При віддаленні від місця вибуху механічна дія ударної хвилі послаблюється.

Детонація – це горіння, яке поширюється зі швидкістю кілька тисяч метрів за секунду. Виникнення детонації пояснюється стисненням, нагріванням та переміщенням незгорівшої суміші перед фронтом полум’я, що призводить до прискорення поширення полум'я і виникнення в суміші ударної хвилі. Таким чином, наявність достатньо потужної ударної хвилі є необхідною умовою для виникнення детонації, оскільки в цьому випадку передача теплоти в суміші здійснюється не шляхом повільного процесу теплопровідності, а шляхом поширення ударної хвилі.

Спалах – короткочасне інтенсивне згоряння обмеженого об'єму газоповітряної суміші над поверхнею горючої речовини або пилоповітряної суміші, що супроводжується короткочасним видимим випромінюванням, але без ударної хвилі і стійкого горіння.

Займання – початок горіння під впливом джерела запалювання.

Спалахування – займання, що супроводжується появою полум'я.

Тління – безполуменеве горіння матеріалу (речовини) у твердій фазі з видимим випромінюванням світла із зони горіння.

Самозаймання – початок горіння внаслідок самоініційованих екзотермічних процесів.

Самоспалахування – самозаймання, що супроводжується появою полум'я.

Самозаймання виникає в результаті різкого збільшення швидкості екзотермічних реакцій в об'ємі горючого матеріалу (речовини), коли швидкість виділення тепла перевищує швидкість його розсіювання. Залежно від внутрішнього імпульсу процеси самозаймання (самоспалахування) поділяються на теплові, мікробіологічні та хімічні.

Теплове самозаймання виникає при зовнішньому нагріванні матеріалу (речовини) контактним (внаслідок теплообміну при контакті з нагрітим предметом), радіаційним (внаслідок променистого тепла) або конвективним (внаслідок передачі тепла повітряним потоком) шляхом. При досяганні температури самонагрівання в матеріалі відбувається різка інтенсифікація екзотермічних процесів окиснення та розкладу, що призводить до підвищення температури матеріалу та його самозаймання. Наприклад, при температурі близько 100 °С дерев'яна тирса, ДВП, стоси газетного паперу та гофрованого картону здатні до самозаймання. Захист від теплового самозаймання – запобігання нагріву матеріалів від зовнішніх джерел тепла.

Мікробіологічне самозаймання відбувається внаслідок самонагрівання, що спричинене життєдіяльністю мікроорганізмів у масі органічних волокнистих чи дисперсних матеріалів. Особливо схильні до мікробіологічного самозаймання невисушені матеріали (речовини) рослинного походження (сіно, зерно, тирса, торф тощо), складені в купу.

Хімічне самозаймання виникає внаслідок дії на речовину повітря, води, а також хімічно-активних речовин. Наприклад, самозаймаються промаслені матеріали (ганчір'я, дерев'яна тирса, навіть металеві ошурки). Внаслідок окиснення масел киснем повітря відбувається самонагрівання, що може призвести до самозаймання. До речовин, що здатні самозайматися при дії на них води належать калій, натрій, цезій, карбіди кальцію і лужних металів й інші. Ці речовини при взаємодії з водою виділяють горючі гази, які здатні самозайнятися внаслідок теплоти реакції. До хімічно-активних речовин, що призводять до самозаймання при взаємодії з ними належать газоподібні, рідинні та тверді окисники. Наприклад, стиснений кисень призводить до самозаймання мінеральних мастил, які не самозаймаються на повітрі.

Здатність самозайматися речовин та матеріалів необхідно врахувати при розробці заходів пожежної профілактики при їх зберіганні, транспортуванні, термообробці, виконанні технологічних операцій і т. п.

45.Показники пожежовибухонебезпечності речовин та матеріалів. Пожежовибуховонебезпечність об’єктів

Важливе значення для визначення рівня пожежної безпеки і вибору засобів та заходів профілактики і гасіння пожежі мають пожежовибухонебезпечні властивості речовин і матеріалів.

Пожежовибухонебезпека речовин та матеріалів - це сукупність властивостей, які характеризують їх схильність до виникнення й поширення горіння, особливості горіння і здатність піддаватись гасінню загорянь. За цими показниками виділяють три групи горючості матеріалів і речовин: негорючі, важкогорючі та горючі.

Негорючі (неспалимі) - речовини та матеріали, нездатні до горіння чи обвуглювання у повітрі під впливом вогню або високої температури. Це матеріали мінерального походження та виготовлені на їх основі матеріали - червона цегла, силікатна цегла, бетон, камінь, азбест, мінеральна вата, азбестовий цемент та інші матеріали, а також більшість металів. При цьому негорючі речовини можуть бути пожежонебезпечними, наприклад, речовини, що виділяють горючі продукти при взаємодії з водою.

Важкогорючі (важко спалимі) - речовини та матеріали, що здатні спалахувати, тліти чи обвуглюватись у повітрі від джерела запалювання, але нездатні самостійно горіти чи обвуглюватись після його видалення (матеріали, що містять спалимі та неспалимі компоненти, наприклад, деревина при глибокому просочуванні антипіренами, фіброліт і т. ін.);

Горючі (спалимі) - речовини та матеріали, що здатні самозайматися, а також спалахувати, тліти чи обвуглюватися від джерела запалювання та самостійно горіти після його видалення.

У свою чергу, у групі горючих речовин та матеріалів виділяють легкозаймисті речовини та матеріали - це речовини та матеріали, що здатні займатися від короткочасної (до ЗО с) дії джерела запалювання низької енергії.

З точки зору пожежної безпеки, вирішальне значення мають показники пожежовибухонебезпечних властивостей горючих речовин і матеріалів. ГОСТ 12.1.044-89 передбачає більше 20 таких показників. Необхідний і достатній для оцінки пожежовибухо-небезпеки конкретного об'єкта перелік цих показників залежить від агрегатного стану речовини, виду горіння (гомогенне чи гетерогенне) і визначається фахівцями.

У таблиці 22.1 наведені дані щодо основних показників поже-жонебезпечних властивостей речовин різного агрегатного стану, які використовуються при визначенні категорій вибухонебезпеки приміщень та вибухонебезпечних і пожежонебезпечних зон в приміщеннях і поза ними:

tcn - температура спалаху - це найменша температура речовини, за якої в умовах спеціальних випробувань над її поверхнею утворюється пара або гази, що здатні спалахувати від джерела запалювання, але швидкість їх утворення ще недостатня для стійкого горіння, тобто має місце тільки спалах - швидке згоряння горючої суміші, що не супроводжується утворенням стиснутих газів;

(займ ~~ температура займання - це найменша температура речовини, за якої в умовах спеціальних випробувань речовина виділяє горючу пару або гази з такою швидкістю, що після їх запалювання від зовнішнього джерела спостерігається спалахування -початок стійкого полум'яного горіння.

Примітка. В табл. 22.1 знаком"+" позначено наявність показника для даного агрегатного стану речовини, а знаком"-" - його відсутність або незначимість.

Температура займання використовується при визначенні групи горючості речовин, при оцінці пожежної небезпеки устаткування та технологічних процесів, пов'язаних із переробкою горючих речовин, при розробці заходів щодо забезпечення пожежної безпеки.

їезайм ~ температура самозаймання - це найменша температура речовини, при якій в умовах спеціальних випробувань відбувається різке збільшення швидкості екзотермічних об'ємних реакцій, що призводить до виникнення полум'яного горіння або вибуху за відсутності зовнішнього джерела полум'я. Температура самозаймання речовини залежить від ряду факторів і змінюється у широких межах. Найбільш значною є залежність температури самозаймання від об'єму та геометричної форми горючої суміші. Із збільшенням об'єму горючої суміші при незмінній її формі температура самозаймання зменшується, тому що зменшується площа тепловіддачі на одиницю об'єму речовини та створюються більш сприятливі умови для накопичення тепла у горючій суміші. При зменшенні об'єму горючої суміші температура її самозаймання підвищується.

Для кожної горючої суміші існує критичний об'єм, у якому самозаймання не відбувається внаслідок того, що площа тепловіддачі, яка припадає на одиницю об'єму горючої суміші, настільки велика, що швидкість теплоутворення за рахунок реакції окислення навіть при дуже високих температурах не може перевищити швидкості тепловіддачі. Ця властивість горючих сумішей використовується при створенні перешкод для розповсюдження полум'я. Значення температури самозаймання використовується для вибору типу вибухозахищеного електроустаткування, при розробці заходів щодо забезпечення пожежовибухобезпеки технологічних процесів, а також при розробці стандартів або технічних умов на речовини та матеріали.

Температура самозаймання горючої суміші значно перевищує tm і tMUM на сотні градусів.

НКМПП та ВКМПП - відповідно нижня і верхня концентраційні межі поширення полум'я - це мінімальна та максимальна об'ємна (масова) частка горючої речовини у сумінй з даним окислювачем, при яких можливе займання (самозаймання) суміші від джерела запалювання з наступним поширенням полум'я по суміші на будь-яку відстань від джерела запалювання.

Суміші, що містять горючу речовину нижче НКМПП чи вище ВКМПП, горіти не можуть: у першому випадку - за недостатньої кількості горючої речовини, а в другому - окислювача. Наявність зон негорючих концентрацій речовин та матеріалів надає можливість вибрати такі умови їх зберігання, транспортування та використання, за яких виключається можливість виникнення пожежі чи вибуху. Горючі пари й гази з НКМПП до 10% по об'єму повітря становлять особливу вибухонебезпеку.

Значну вибухову та пожежну небезпеку становлять різноманітні горючі пилоподібні речовини, особливо в завислому стані. Залежно від значення НКМ поширення полум'я пил поділяється на вибухо-та пожежонебезпечний. При значенні НКМПП менше 65 г/м3 пил є вибухонебезпечним (пил сірки, борошна, цукру), а при більших значеннях НКМПП - пожежонебезпечним (пил деревини, тютюну).

КМПП включаються до стандартів, технічних умов на гази, легкозаймисті рідини та тверді речовини, здатні утворювати вибухонебезпечні газо-, паро- та пилоповітряні суміші, при цьому для пилу встановлюється тільки НКМПП, тому що великі концентрації пило-завису майже не можуть бути досягнуті у відкритому просторі, а за будь-яких концентрацій пилу згоряє тільки та його частина, яка забезпечена окислювачем. Значення концентраційних меж застосовуються при визначенні категорії приміщення та класу зон за вибухопожежною та пожежною небезпекою при розрахунку гранично допустимих вибухобезпечних концентрацій газів, парів і пилу в повітрі робочої зони з потенційним джерелом запалювання, при розробці заходів щодо забезпечення пожежної безпеки.

tHKM і tBKM - відповідно нижня і верхня температурні межі поширення полум'я - температури матеріалу (речовини), за яких його (її) насичена пара чи горючі леткі утворюють в окислювальному середовищі концентрації, що дорівнюють нижній та верхній концентраційним межам поширення полум'я.

Значення ТМПП використовуються під час розробки заходів щодо забезпечення пожежовибухобезпеки об'єктів при розрахунку пожежовибухобезпечних режимів роботи технологічного устаткування, при оцінці аварійних ситуацій, пов'язаних з розливом горючих рідин, для розрахунку КМПП тощо. Безпечною, з точки зору ймовірності самозаймання газоповітряної суміші, прийнято вважати температуру на 10 °С меншу за нижню або на 15 °С вищу за верхню температурну межу поширення полум'я для даної речовини.

Наявність приведених в табл. 22.1 показників пожежонебезпеч-них властивостей речовин різного агрегатного стану пов'язана з особливостями їх горіння.

Тверді горючі речовини у більшості випадків самі по собі у твердому стані не горять, а горять горючі леткі продукти їх розпаду під дією високих температур у суміші з повітрям - полуменеве горіння. Таким чином, горіння твердих речовин у більшості випадків пов'язане з переходом їх горючої складової в інший агрегатний стан - газовий. І тільки тверді горючі речовини з високим вмістом горючих речовин (антрацит, графіт і т. ін.) можуть горіти у твердому агрегатному стані - майже без полум'я. Тому тверді горючі речовини, в цілому більш інертні щодо можливого займання, а більшість приведених у табл. 22.1 показників пожежонебезпечних властивостей для твердих речовин, за винятком t3auM і tcmkv, не мають суттєвого значення.

Для твердих речовин, в цілому, величини 4ій« і ісзай.« коливаються в межах (2...5 • 10 ) °С.

Спалимі рідини. Характерним для процесу горіння цих рідин є те, що самі рідини не горять, а горить їх пара у суміші з повітрям. Якщо над поверхнею спалимої рідини концентрація пари буде менше НКМПП, то запалити таку рідину від зовнішнього джерела запалювання неможливо, не довівши температуру рідини до значення, більшого за tHKM. Таким чином, горіння рідин пов'язане з переходом їх з одного агрегатного стану (рідини) в інший (пару). У зв'язку з цим для оцінки вибухопожежонебезпечних властивостей спалимих рідин мають значення всі показники, наведені в табл. 22.1. За tm спалимі рідини поділяються на 5 класів:

1. tcn < -13 °С (в закритому тиглі);

2. 4„ = -13-28 °С;

3. t„- 29-61 °С;

4. tm = 62-120 °С;

5. tcn > 120 °С.

Перші 3 класи рідин умовно відносять до легкозаймистих (ЛЗР). Характерною особливістю для ЛЗР є те, що більшість з них, навіть при звичайних температурах у виробничих приміщеннях, можуть утворювати пароповітряні суміші з концентраціями в межах поширення полум'я, тобто вибухонебезпечні пароповітряні суміші.

4-й і 5-й класи рідин за tcn належать до горючих (ГР). Пароповітряні суміші з концентраціями в межах поширення полум'я для ГР можуть мати місце при температурах, нехарактерних для виробничих приміщень.

Горючі гази горять в суміші з повітрям в концентраціях в межах НКМПП - ВКМПП, і такі суміші, гази, загалом, створюють без агрегатних переходів речовин. Тому горючі гази мають більшу готовність до горіння, ніж тверді горючі речовини і спалимі рідини, є більш небезпечними з точки зору вибухопожежної безпеки, а відповідні їх властивості характеризуються тільки трьома показниками - tcmiiv, НКМПП і ВКМПП (див. табл. 22.1).

Пилоповітряні суміші - суміші з повітрям подрібнених до розмірів частинок до 850 мкм твердих горючих речовин. Процес горіння пилу, в цілому, подібний до процесу горіння твердих речовин. Але наявність великої питомої поверхні (відношення площі поверхні пилинок до їх маси) пилинок, яка контактує з окисником (повітрям), і здатність до швидкого їх прогріву по всій масі під дією джерела запалювання, роблять пил більш небезпечним з точки зору пожежної безпеки, ніж тверді речовини, з яких він створений. Для оцінки вибухопожежонебезпечних властивостей пилу використовують, в основному, показники ітйм і tC3aUM і НКМПП (див. табл. 22.1).

За здатністю до загоряння і особливостями горіння пил поділяють на вибухонебезпечний і пожежонебезпечний.

До вибухонебезпечного належить пил з НКМІШ до 65 г/м3. При цьому виділяють особливо вибухонебезпечний пил з НКМПП до 15 г/м3 і вибухонебезпечний - НКМПП становить 15...65 г/м3.

До пожежонебезпечного належить пил з НКМПП більше 65 г/м3. Прп цьому пил з tC3mlv до 250 °С належить до особливо пожежонебезпечного, а при tC3ml4 > 250 °С - до пожежонебезпечного.

Загальною характеристикою матеріалів і речовин є їх вибухопожежонебезпечність, що може призвести до негативних наслідків при їх зберіганні, переробці або транспортуванні.

Характеристика вибухопожежонебезпечних властивостей не є еквівалентною поняттю горючості речовин і матеріалів.

Окрім наведених вище показників до характеристики пожежонебезпеки належить нижня і верхня концентраційна межа розповсюдження полу'я, вище і нижче якої суміш стає нездатною до розповсюдження полум'я.

Зона розповсюдження полум'я — це зона об'ємних часток у суміші з окислювачем між нижньою і верхньою межею спалахування.

Дані про нижню і верхню концентраційну межу розповсюдження полум'я використовують для визначення категорії виробництва за пожежовибухонебезпечнісю, а також для розрахунку вибухобезпечних концентрацій газів, парів і пилу у трубопроводах, технологічному обладнанні, проектуванні вентиляційних систем і т.ін.

При роботі технологічного обладнання для оцінки аварійних ситуацій, пов'язаних з розливом горючих речовин використовують дані про темепературні межі розповсюдження полум'я, за яких насичені пари утворюють у відповідному окислюваному середовищі концентрації, що відповідають нижній і верхній межі розповсюдження полум'я.

Для розробки заходів забезпечення пожежовибухової безпеки в процесі використання горючих речовин, а також забезпечення електростатичної іскробезпеки технологічних процесів використовують дані про мінімальну енергію запалювання.

Мінімальна енергія самозапалювання — це найменше значення енергії електричного розряду, здатного запалити легкозаймисту суміш газу, пари або пилу з повітрям.

При розрахунках тривалості пожежі в резервуарах, а також інтенсивності тепловиділення й температурного режиму пожежі використовують дані про такий показник як швидкість вигорання.

Швидкість вигоряння — це кількість речовини, яка згоріла за одиницю часу на одиниці площі.

Швидкість вигоряння характеризує інтенсивність згоряння речовини в умовах пожежі.

Величина, яка характеризує оптичну щільність диму, який утворюється при згорянні речовини в об'ємі приміщення, має назву коефіцієнт димоутворення. Він використовується для класифікації матеріалів за димоутворюючою здатністю.

Димоутворююча здатність матеріалів буває: мала, помірна та висока.

Показник токсичності продуктів горіння полімерних матеріалів використовують для порівняльної оцінки різних видів матеріалів.

Полімерні матеріали за показниками токсичності продуктів горіння класифікуються на:

надзвичайно небезпечні до 13 г/м3;

високонебезпечні від 13 до 40 г/м3;

помірно небезпечні від 40 до 120 г/м3;

малонебезпечні понад 120 г/м3.

Окрім вказаних показників для оцінки пожежовибухонебезпечних речовин та їх сумішей, токсичної небезпеки, використовують такі поняття як стехіометрична концентрація горючих речовин, адіабатична температура горіння й максимальний ступінь розширення продуктів горіння.

Стехіометрична концентрація горючої речовини ?ст— це вміст горючої речовини в суміші з окислювальним середовищем, що обчислюється за формулою:

, (35)

де b – стехіометричний коефіцієнт кисню в хімічній реакції

горіння даної речовини.

Адіабатична температура горіння – це теоретично обчислена температура продуктів горіння.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]