Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория электросвязи. Конспект лекций.doc
Скачиваний:
361
Добавлен:
04.09.2019
Размер:
13.1 Mб
Скачать

Лекция № 10. Общие понятия о модуляции.

Модуляция – это процесс изменения одного или нескольких параметров несущей в соответствии с изменением параметров сигнала, воздействующего на нее (модулирующего сигнала).

Параметры несущей, изменяющиеся во времени под воздействием модулирующего сигнала, называются информационными, так как в них заложена передаваемая информация. Физический процесс управления параметрами несущей и является модуляцией. Устройство, при помощи которого получают модулированные сигналы, называется модулятором.

Модулятор.

Модулятор должен иметь два входа: один для модулирующего (информационного) сигнала, другой – для несущей. Модулированный (высокочастотный) сигнал на выходе модулятора зависит от времени и от модулирующего сигнала , поэтому и обозначается как функция двух аргументов .

Модулированные сигналы различаются по виду несущей и по модулируемым параметрам. В качестве несущей чаще всего используются гармонические колебания, периодическая последовательность импульсов, реже – колебания специальной формы, узкополосный случайный процесс.

Гармоническая несущая характеризуется тремя свободными параметрами: амплитудой , частотой и фазой . Все они могут быть информационными. В результате изменения одного из этих параметров при постоянстве других, получим три основных вида модуляции:

  • амплитудную модуляцию (АМ);

  • частотную модуляцию (ЧМ);

  • фазовую модуляцию (ФМ).

Модулированный сигнал при гармонической несущей в общем случае можно представить в виде

,

где – огибающая сигнала; – полная фаза.

За интервал времени, в течении которого полная фаза изменится на , огибающая не успеет сильно измениться и ее можно считать медленно меняющейся.

Главная особенность любой модуляции – это преобразование спектра модулирующего сигнала. В общем случае происходит расширение спектра, а при гармонической несущей – перенос спектра в область около частоты несущей. Именно это обстоятельство и привело к использованию только модулированных сигналов в радиосвязи и многоканальной связи.

Практически в настоящее время в системах связи используется более пятидесяти видов модуляции и число их продолжает расти. Такое большое количество различных видов модуляции связано с тем, что каждый из них имеет свою помехоустойчивость. Поэтому, прежде всего надо учитывать способность данного вида модуляции обеспечить заданное качество передачи сообщений по линии связи при наличии помех.

Лекция № 11. Амплитудная модуляция (ам) гармонической несущей.

Амплитудной модуляцией (АМ) называется процесс изменения амплитуды несущего колебания под воздействием модулирующего сигнала . В результате амплитуда несущей получает приращение и становится равной

,

где – амплитуда несущей; – коэффициент пропорциональности, выбираемый так, чтобы амплитуда всегда была положительной. Частота и фаза несущего гармонического колебания при АМ остаются неизменными.

Н а рисунке показано, что в соответствии с мгновенными значениями амплитуда несущей увеличивается до значения получая приращение , то уменьшается до , получая приращение . При этом амплитуда повторяет форму модулирующего сигнала . В АМ сигнале амплитуда является огибающей высокочастотного заполнения , которая на рисунке изображена штриховой линией.

Коэффициент модуляции.

Для математического описания АМ сигнала вместо коэффициента пропорциональности , зависящего от конкретной схемы модулятора, вводится коэффициент модуляции , который физически означает относительное значение приращения. Здесь – среднее арифметическое значение приращения амплитуды. Поскольку среднее значение амплитуды АМ сигнала во время модуляции , то коэффициент модуляции численно равен

.

Коэффициент модуляции – это отношение разности между максимальным и минимальным значениями амплитуд АМ сигнала к сумме этих значений. Часто коэффициент модуляции выражается в процентах . Однако при всех расчетах АМ сигналов обычно пользуются коэффициентом модуляции не в процентах, а в относительных единицах.

Для симметричного модулирующего сигнала АМ сигнал также будет симметричным: и

,

то есть коэффициент модуляции равен отношению максимального приращения амплитуды к амплитуде несущей. Физически характеризует собой глубину амплитудной модуляции и может изменяться в пределах .

Аналитическое выражение (математическая модель) любого АМ сигнала, с учетом коэффициента модуляции, будет выглядеть следующим образом:

.

Амплитудная модуляция гармоническим колебанием.

В простейшем случае модулирующий сигнал является гармоническим колебанием с частотой и начальной фазой . При этом аналитическое выражение однотонального АМ сигнала будет выглядеть следующим образом:

На рисунке показаны временные диаграммы однотонального АМ сигнала при различных значениях коэффициента модуляции .

Характерное искажение сигнала возникает при перемодуляции, когда форма огибающей перестает повторять форму модулирующего гармонического колебания.

В однотональном АМ сигнале имеется три гармонических спектральных составляющих с частотами: – несущей; – верхней боковой; – нижней боковой.

Спектральная диаграмма однотонального АМ сигнала симметрична относительно несущей частоты . Амплитуды боковых колебаний одинаковы и даже при не превышают половины амплитуды несущего колебания.

Амплитудная модуляция при сложном модулирующем сигнале.

Гармонические модулирующие сигналы и соответственно однотональный АМ сигнал на практике встречаются редко. В большинстве случаем модулирующие первичные сигналы являются сложными функциями времени.

Спектр АМ сигнала при сложном модулирующем сигнале можно построить исходя из следующих рассуждений. Любой сложный сигнал можно представить в виде суммы конечной (или бесконечной) гармонических составляющих, воспользовавшись рядом Фурье. Каждая гармоническая составляющая сигнала с частотой вызовет в АМ сигнале две боковые составляющие с частотами . Множество гармонических составляющих в модулирующем сигнале вызовет множество боковых составляющих с частотами . Это показано на рисунке.

Спектральные диаграммы: а) – модулирующего многотонального сигнала; б) – АМ сигнала при многотональной модуляции; в) – модулирующего сигнала с непрерывным спектром; г) – АМ сигнала при модуляции сигнала непрерывным спектром.

В спектре сложномодулированного АМ сигнала, кроме несущего колебания с частотой , содержатся группы верхних и нижних боковых колебаний, которые образуют верхнюю боковую и нижнюю боковую полосу АМ сигнала. При этом верхняя боковая полоса частот полностью повторяет спектральную диаграмму сигнала , сдвинутую в область высоких частот на величину . Нижняя боковая полоса частот также повторяет спектральную диаграмму сигнала , но частоты в не располагаются в зеркальном (обратном) порядке относительно несущей частоты .

Из этого следует вывод: ширина спектра АМ сигнала равна удвоенному значению наиболее высокой частоты спектра модулирующего низкочастотного сигнала, то есть