Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсак перер. (2).doc
Скачиваний:
4
Добавлен:
14.09.2019
Размер:
613.89 Кб
Скачать

Раздел 2. Условия существования периодических решений Необходимые и достаточные условия периодичности.

Рассмотрим систему:

(2.1)

Сначала мы не будем делать никаких предположений о природе коэффициентов , кроме предположения об их периодичности по .

Пусть и ─ решение системы (2.1), удовлетворяющее следующим данным Коши:

, .

Для того чтобы это решение было периодическим с периодом , необходимо и достаточно, чтобы оно удовлетворяющее следующим условиям:

, . (2.2)

Очевидно, что условия (2.2) необходимы, так как функция называется периодической, если она удовлетворяет условиям:

, (2.3)

каково бы не было . Условия (2.2) являются частным случаем (2.3) при . Эти условия являются так же достаточными. В самом деле, правые части системы (2.1) ─ периодические функции времени периода и, следовательно, они инвариантны относительно замены переменного , тогда в силу (2.2) по и мы будем иметь одну и ту же задачу Коши и, следовательно,

;

или

; .

Так как это равенство справедливо для любых , то оно совпадает с (2.3) и, следовательно, функции и ─ периодические.

Предположим далее, что система фундаментальных решений системы:

(2.4)

нам известна. Обозначим эти функции через , , и , и решение системы (2.1) будем искать методом вариации произвольных постоянных, полагая

, . (2.5)

где и ─ некоторые функции времени, подлежащие определению.

Подставим выражения (2.5) в (2.1). Принимая во внимание, что функции , , и удовлетворяют системе (2.4), мы получим следующие уравнения для определения функций и ;

, ,

откуда

(2.6)

где и ─ новые произвольные постоянные, а ─ определитель Вронского

.

Постоянные и определяются из начальных условий , при . Так как интегральные слагаемые в выражениях (2.6) при обращается в нуль, то постоянные и определяются из уравнений

(2.7)

Используя полученные выражения, выпишем теперь условия периодичности (2.2)

(2.8)

Для того чтобы система (2.1) допускала периодические решения, необходимо и достаточно, чтобы функции и удовлетворяли условиям (2.8).

Рассмотрим эти условия для некоторых специальных случаев, так как это будет играть в дальнейшем изложении особую роль.

Сначала рассмотрим тот частный случай, когда фундаментальные решения - периодические функции, Заметим, что уравнения в вариациях, отвечающие изохорным системам, т. е. системам, период колебаний которых не зависит от начальных условий, всегда имеют периодические решения.

Так как C и D – постоянные числа, то в силу периодичности функции и из (2.7), мы получаем следующие условия:

(2.7’)

Равенства (2.7’) позволяют упростить систему (2.8), которую можно теперь рассматривать как систему однородных алгебраических уравнений относительно интегралов

.

Перепишем эту систему в следующем виде:

(2.9)

Определитель системы (2.9) есть определитель Вронского для функций . В силу независимости этих функций он отличен от нуля. Таким образом, система (2.9) имеет только тривиальное решение. Поэтому

(2.10)

Итак, мы пришли к следующему результату: если фундаментальное решение системы (2.4) выражается периодическими функциями, то для того, чтобы любое решение системы (2.1) было периодическим необходимо и достаточно, чтобы функции и удовлетворяли условиям (2.10).

Сейчас рассмотрим тот частный случай, когда система (2.1) имеет вид

(2.11)

Система (2.11) сводится к уравнению колебаний математического маятника под действием периодической внешней силы

где

Линейно независимые решения системы (2.11) имеют вид

(2.12)

Определитель Вронского этих функций равен единице, поэтому условия (2.10) будут приведены к такому виду:

(2.13)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]