Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика v 2.0.docx
Скачиваний:
12
Добавлен:
19.09.2019
Размер:
282.13 Кб
Скачать

Билет 1

Первый закон Ньютона

Первый закон механики, или закон инерции (инерция – это свойство тел сохранять свою скорость при отсутствии действия на него других тел), как его часто называют, был установлен еще Галилеем. Но строгую формулировку этого закона дал и включил его в число основных законов механики Ньютон. Закон инерции относится к самому простому случаю движения – движению тела, на которое не оказывают воздействия другие тела. Такие тела называются свободными телами.

Ответить на вопрос, как движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо создать для тела условия, при которых влияние внешних воздействий можно делать все меньшим и меньшим, и наблюдать, к чему это ведет. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к земле уравновешивается действием поверхности, на которую он опирается, и на скорость его движения влияет только трение.) При этом легко обнаружить, что чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, заметно не меняя скорость. Трение можно уменьшить до минимума с помощью воздушной подушки – струй воздуха, поддерживающих тело над твердой поверхностью, вдоль которой происходит движение. Этот принцип используется в водном транспорте (суда на воздушной подушке). На основе подобных наблюдений можно заключить: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу впервые пришел Галилей.

С другой стороны, нетрудно заметить, что, когда скорость тела меняется, всегда обнаруживается воздействие на него других тел. Отсюда можно прийти к выводу, что тело, достаточно удаленное от других тел и по этой причине не взаимодействующее с ними, движется с постоянной скоростью.

Движение относительно, поэтому имеет смысл говорить лишь о движении тела по отношению к системе отсчета, связанной с другим телом. Сразу же возникает вопрос: будет ли свободное тело двигаться с постоянной скоростью по отношению к любому другому телу? Ответ, конечно, отрицательный. Так, если по отношению к Земле свободное тело движется прямолинейно и равномерно, то по отношению к вращающейся карусели тело заведомо так двигаться не будет.

Наблюдения за движениями тел и размышления о характере этих движений приводят нас к заключению о том, что свободные тела движутся с постоянной скоростью, по крайней мере, по отношению к определенным телам и связанным с ними системам отсчета. Например, по отношению к Земле. В этом состоит главное содержание закона инерции.

Поэтому первый закон Ньютона может быть сформулирован так:

существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на неё внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Инерциальная система отсчета

Первый закон Ньютона утверждает (которое с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы существуют в действительности. Этот закон механики ставит в особое, привилегированное положение инерциальные системы отсчета.

Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.

Или

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.

Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т. е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

С гораздо большей точностью можно считать инерциальной систему отсчета, в которой начало координат совмещено с центром Солнца, а координатные оси направлены к неподвижным звездам. Эту систему отсчета называют гелиоцентрической.

Инерциальными являются и системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета.

Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея или механического принципа относительности.

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).

Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальными.

К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

Примером механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко. Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1).

О том, что телу свойственно сохранять не любое движение, а именно прямолинейное, свидетельствует, например, следующий опыт (рис. 2). Шарик, двигавшийся прямолинейно по плоской горизонтальной поверхности, сталкиваясь с преградой, имеющей криволинейную форму, под действием этой преграды вынужден двигаться по дуге. Однако когда шарик доходит до края преграды, он перестает двигаться криволинейно и вновь начинает двигаться по прямой. Обобщая результаты упомянутых (и аналогичных им) наблюдений, можно сделать вывод, что если на данное тело не действуют другие тела или их действия взаимно компенсируются, это тело покоится или же скорость его движения остается неизменной относительно системы отсчета, неподвижно связанной с поверхностью Земли.

Билет 2

Инертность и масса тела. Единица массы

Свойство тела сохранять свою скорость неизменной, т. е. сохранять состояние покоя или равномерного прямолинейного движения при отсутствии внешних воздействий на это тело или их взаимной компенсации, называется его инертностью. Инертность тел приводит к тому, что мгновенно изменить скорость тела невозможно - действие на него другого тела должно длиться определенное время. Чем инертнее тело, тем меньше изменяется его скорость за данное время, т. е. тем меньшее ускорение получает это тело.

Количественную меру инертности тела называют его массой. Чем более инертно тело, тем больше его масса.

Наблюдения показывают, что для любых двух взаимодействующих между собой тел независимо от способа их взаимодействия отношение модулей ускорений, полученных телами в результате этого взаимодействия, всегда получается одинаковым. Следовательно, это отношение зависит от инертных свойств взаимодействующих тел, т. е. от их масс.

Как отмечалось выше, чем больше масса тела, тем меньшее ускорение получает данное тело при взаимодействии тел между собой. Поэтому можно предположить, что отношение модулей ускорений, получаемых телами при взаимодействии между собой, равно величине, обратной отношению масс этих тел, т. е.

a1/a2=m2/m1. (2.1)

Известно, что изменение скорости тела, т. е. появление ускорения, всегда происходит под действием на данное тело окружающих его тел. Для характеристики этих действий введено понятие силы.

Силой называют векторную величину, характеризующую такое действие на данное тело других тел (или полей), которое может вызвать ускорение и деформацию тела (здесь мы имеем в виду произвольное твердое тело, а не материальную точку).

Если на данное тело действует только одна сила, она обязательно вызывает и ускорение и деформацию тела. Если же на тело одновременно действуют несколько сил, то возможен и случай их компенсации (уравновешивания) и тело может не получать ускорения.

Поскольку сила способна вызывать и ускорение и деформацию тел, оба эти действия могут быть использованы для измерения силы и установления единицы ее измерения.

Динамометры и пружинные весы служат для измерения силы по производимой ею деформации. Использовав соотношение, существующее между силой, массой и ускорением, которое было впервые установлено Ньютоном и получило название второго закона Ньютона, можно определить силу по вызываемому ею ускорению. Наблюдения показывают, что если действовать одной и той же силой (например, силой упругости растянутой пружины) на тела различной массы, то модули ускорений, получаемых телами под действием этой силы, окажутся обратно пропорциональными массами этих тел, т. е.

a1/a2=m2/m1.

(Данная формула совпадает с формулой (2.1), следовательно, сделанное нами тогда предположение полностью подтверждается.)

Из наблюдений следует также, что если на одно и то же тело поочередно действовать различными силами, то модули ускорений, получаемых телом под действием этих сил, окажутся пропорциональными модулям этих сил, т. е.

a1/a2=F1/F2.

Из последних двух формул видно, что а = F/m, следовательно, F=ma, или в векторной форме

F=ma. (2.3)

Формула (2.3) выражает второй закон Ньютона, который формулируют так: сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этому телу силой.

Билет 3

Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации, или силами всемирного тяготения. Сила всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил,

что сила F равна: GmM/r^2

массы взаимодействующих тел, R — расстояние между ними, G — коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами. В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если m1 = m2 = 1 кг, R = 1 м, то G = F, т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное значение: Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свободного падения. В соответствии со вторым законом Ньютона g = Ft*m следовательно, Ft = mg. Сила тяжести всегда направлена к центру Земли. В зависимости от высоты h над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2.

В технике и быту широко используется понятие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете (рис. 6). Вес тела обозначается Р. Единица веса — Н. Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следовательно, и вес тела равен силе тяжести (рис. 7):

Р = N = mg.

В случае движения тела вертикально вверх вместе с опорой с ускорением по второму закону Ньютона можно записать mg + N = та (рис. 8, а).

В проекции на ось OX: -mg + N = та, отсюда N = m(g + a).

Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и находится по формуле Р = m(g + a).

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой. Действие перегрузки испытывают на себе космонавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при выполнении фигур высшего пилотажа, и водители автомобилей при резком торможении.

Если тело движется вниз по вертикали, то с помощью аналогичных рассуждений получаем

т. е. вес при движении по вертикали с ускорением будет-меньше силы тяжести (рис. 8, б).

Если тело свободно падает, то в этом случае P = (g- g)m = 0.

Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, поэтому в корабле наблюдается состояние невесомости.