Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
14. Система химического знания.docx
Скачиваний:
7
Добавлен:
22.09.2019
Размер:
33.62 Кб
Скачать

Второй уровень химического знания. Структурная химия

Структурная химия стала более высоким уровнем по отношению к учению о составе вещества. При этом химия из науки преимущественно аналитической превратилась в науку синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.

Сам термин «структурная химия» — понятие условное. В нем, прежде всего, подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных.

Важнейшим шагом в развитии структурной химии стало создание теории химического строения органических соединений русским химиком А.М. Бутлеровым.

В XX в. было введено понятие атомной структуры — устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, и молекулярной структуры — сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов.

На основе достижений структурной химии у исследователей появилась уверенность в положительном исходе экспериментов в области органического синтеза. Сам термин «органический синтез» появился в 1860—1880-е гг. и стал обозначать целую область науки, названную так в противоположность общему увлечению анализом природных веществ. Этот период в химии был назван триумфальным шествием органического синтеза. Химики гордо заявляли о своих ничем не сдерживаемых возможностях, обещая синтезировать из угля, воды и воздуха все самые сложные тела, вплоть до белков, гормонов и пр. И действительность, казалось, подтверждала эти заявления: за вторую половину XIX в. число органических соединений за счет вновь синтезированных возросло с полумиллиона до двух миллионов.

В это время появились различные препараты для фармации, искусственный шелк и т.д. До этого подобные материалы добывались в ограниченных количествах и с огромными затратами низкопроизводительного, преимущественно сельскохозяйственного, труда.

Современная структурная химия достигла больших результатов. Синтез новых органических веществ позволяет получить полезные и ценные материалы, отсутствующие в природе. Так, ежегодно в мире синтезируют тысячи килограммов аскорбиновой кислоты (витамина С), множество новых лекарств, среди которых — безвредные антибиотики, лекарства против гипертонии, язвенной болезни и др.

Третий уровень химического знания. Учение о химическом процессе

Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывается изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но и наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила создание производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучу-ков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений — на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

Так, еще в 1935 г. такие материалы, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. Но уже в 1960-е гг. 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья. Помимо этого, химия дает ежегодно сотни тысяч тонн мочевины и нефтяного белка в качестве корма скоту и около 200 млн. т удобрений.

Столь впечатляющие успехи были достигнуты на основе учения о химических процессах — области науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основу данного учения положены химическая термодинамика и кинетика, поэтому этот раздел науки в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов — лауреат Нобелевской премии, основатель химической физики. Он в своей Нобелевской лекции 1965 г. заявил, что химический процесс — это то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к сложным, многоуровневым живым системам. Ведь любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Поэтому химия становится мостом от объектов физики к объектам биологии.

Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Еще одна область развития учения о химических процессах — химия высоких и сверхвысоких давлений. При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102—103 атм исчезает различие между жидкой и газовой фазами, а при 103—105 атм — между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм. Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов: графит кристаллизуется в алмазы.