Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_EPiU_2_sem.docx
Скачиваний:
36
Добавлен:
23.09.2019
Размер:
11.66 Mб
Скачать

7. Стабилизация рабочей точки бт в схеме с коллекторной стабилизацией. Основные расчетные соотношения.

На рис. 3.9 представлена схема с коллекторной стабилизацией, в которой резистор RБ подключается к коллектору транзистора с напряжением UКЭ, тогда

При повышении температуры коллекторный ток увеличивается, следовательно, коллекторное напряжение U КЭ уменьшается, а значит, уменьшается ток базы IБ, что приводит к уменьшению коллекторного тока IК. Эти два фактора частично компенсируют друг друга, поэтому рабочая точка стремится вернуться в исходное положение.

Рис. 3.9

8. Стабилизация рабочей точки бт в схеме с эмиттерной стабилизацией. Основные расчетные соотношения.

Наиболее эффективной является схема с эмиттерной стабилизацией рабочей точки (рис. 3.10). Повышение температуры приводит к увеличению тока IК, уменьшению напряжения на коллекторе UК и увеличению эмиттерного тока IЭ = IК + IБ. В результате увеличивается падение напряжения на резисторе RЭ. Поскольку потенциал база транзистора зафиксирован делителем напряжения R1, R2, то напряжение между базой и эмиттером UБЭ уменьшается

что приведет к уменьшению тока базы IБ, а значит и коллекторного тока IК. Происходит частичная взаимная компенсация этих двух факторов, влияющих на рабочую точку транзистора, поэтому ее положение практически не изменяется. Наличие резистора RЭ – резистора обратной связи – при отсутствии конденсатора CЭ не только стабилизирует рабочую точку, но и изменяет работу каскада по переменному току. Для схемы изменяющийся

входной сигнал также является дестабилизирующим фактором. Переменная составляющая эмиттерного тока с амплитудой Imэ создает на резисторе RЭ падение напряжения, которое уменьшает амплитуду переменной составляющей напряжения что приводит к уменьшению коэффициента усиления каскада.

Рис. 3.10

9 . Эквивалентные представления усилительного каскада в виде управляемого источника напряжения и управляемого источника тока.

Входная цепь практически не потребляет тока, т.е. работает в режиме хо- лостого хода по входу. Усилитель в данном случае управляется напряжением. Усилитель на рис. 10.2,а является источником напряжения, управляемым напряжением (ИНУН), и предназначен для усиления входного напряжения с определенным коэффициентом усиления КU. На рис. 10.2 представлена эквивалентная схема усилителя, у которого , а т.е. в выходной цепи действует источник тока.Такой усилитель представляет собой источник тока, управляемый напряжением (ИТУН).

У силитель тока, эквивалентная схема рис. 10.3,а,б, характеризуется тем, что входное сопротивления усилителя значительно меньше внутреннего сопротивления источника сигнала Считается, что усилитель управляется током и значение входного тока определяется:

Источник сигнала работает в режиме короткого замыкания, и усилитель (рис 10.3,а) является источником тока, управляемым током. Усилитель, эквивалентная схема которого представлена на рис. 10.3,б. имеет источник тока во входной цепи и источник напряжения в выходной цепи . Он представляет собой источник напряжения, управляемый током. Для усилителя мощности необходимо выполнение условия согласования входной цепи с источником сигнала и выходной цепи с сопротивлением нагрузки для передачи максимальной мощности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]