Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_Geodezia шпоры!!!.docx
Скачиваний:
17
Добавлен:
24.09.2019
Размер:
135.02 Кб
Скачать

44. Цмм и ммм. Виды цмм. Задачи, решаемые с использованием цмм и ммм.

Цифровой моделью местности (ЦММ) называют совокупность точек местности с известными трехмерными координатами и различными кодовыми обозначениями, предназначенную для аппроксимации местности с ее природными характеристиками, условиями и объектами.

Кодовые обозначения характеризуют связи между соответствующими точками ЦММ.

Общая ЦММ — это многослойная модель, которая в зависимости от назначения может быть представлена сочетанием частных цифровых моделей (слоев): рельефа, ситуационных особенностей, почвенно-грунтовых, гидрогеологических, инженерно-геологических, гидрометеорологических условий, технико-экономических показателей и других характеристик местности.

Математической моделью местности (МММ) называют математическую интерпретацию цифровых моделей для компьютерного решения конкретных инженерных задач.

В зависимости от инженерного назначения математической модели для одной и той же ЦММ может быть использовано несколько различных МММ.

В рамках системного автоматизированного проектирования рациональным образом распределяются функции между инженером-проектировщиком, компьютером и другими средствами автоматизации. Поэтому при решении ряда инженерных задач строительства инженер работает с доступными ему топографическими картами и планами, поручая компьютеру работу с доступными ему цифровыми и математическими моделями тех же участков местности.

Конечным результатом инженерных изысканий при проектировании на уровне САПР по этой причине является получение крупномасштабных топографических планов и ЦММ на одни и те^же участки местности в единой системе координат. Однако нужно иметь в виду, что информационная емкость общей ЦММ при этом существенно больше информационной емкости самых подробных крупномасштабных топографических планов.

ЦММ и МММ используют прежде всего для получения необходимой исходной информации для автоматизированного проектирования (продольные профили земли по оси трассы, поперечные профили, инженерно-геологические разрезы и т. д.).

Возможности цифрового и математического моделирования позволили, в частности, в корне изменить технологию проектирования инженерных объектов и потребовали изменения технологии и методов сбора, регистрации и представления исходных данных при изысканиях.

Виды ЦММ.

Конечной целью изысканий для строительства линейных инженерных объектов (автомобильных, лесовозных дорог, каналов, коммуникаций и т. д.) является получение топографического плана местности в пределах широкой полосы варьирования конкурентных вариантов трассы и цифровой модели рельефа и геологического строения того же участка местности (ЦММ) в единой системе координат. По ЦММ и получаемым на их основе математическим моделям местности (МММ) в' конечном итоге осуществляют системное, автоматизированное проектирование всех конкурентных вариантов трассы линейных сооружений. Трудовые затраты на получение с ЦММ необходимой для проектирования информации (профили земли по оси трассы, поперечные профили земли, геологические разрезы и т. д.) сокращаются в несколько десятков раз по сравнению с получением той же информации при использовании топографических планов и стереоскопических моделей по традиционной технологии.

При цифровом моделировании рельефа и геологического строения местности в зависимости от сложности рельефа, ситуационных особенностей местности, способа производства изысканий, задач проектирования, наличия парка современных геодезических приборов, приборов спутниковой навигации, средств геофизической подповерхностной разведки, средств автоматизации и вычислительной техники могут быть сформированы ЦММ с использованием самых разнообразных принципов.

Вопросам разработки различных видов ЦММ было посвящено большое количество исследований. При этом все известные ЦММ можно разбить на три большие группы: регулярные, нерегулярные и статистические.

Регулярные ЦММ создают путем размещения точек в узлах геометрических сеток различной формы (треугольных, прямоугольных, шестиугольных), накладываемых на аппроксимируемую поверхность с заданным шагом. Наиболее часто применяют ЦММ с размещением исходных точек в узлах сеток квадратов или равносторонних треугольников . Регулярные ЦММ в узлах правильных шестиугольных сеток нашли применение при проектировании нефтепромысловых дорог в условиях равнинного рельефа Западной Сибири.

Регулярные модели весьма эффективно использовать при проектировании вертикальной планировки городских улиц, площадей, аэродромов и других инженерных объектов на участках местности с равнинным рельефом. Однако опыт использования ЦММ с регулярным массивом исходных данных показал, что требуемая точность аппроксимации рельефа достигается лишь при очень высокой плотности точек местности, которая в зависимости от категории рельефа должна быть в 5—20 раз выше по сравнению с нерегулярными ЦММ. Появление высокопроизводительных дигитайзеров и коордиметров с автоматической регистрацией информации по заданному интервалу длины или времени, тем не менее, делает использование регулярных моделей весьма перспективным.

Нерегулярные ЦММ, представленные большим числом типов, нашли широкое применение в практике автоматизированного проектирования объектов строительства.

Поскольку магистральный ход в общем случае может иметь углы поворота, для представления нерегулярного массива необходимо еще задавать и ординаты вершин углов поворота. Информацию для криволинейной трассы представляют уже в трехкоординатном виде.

ЦММ, встроенные по поперечникам к оси магистрального хода или к оси трассы находили широкое применение в начальный период перехода на системное, автоматизированное проектирование линейных инженерных объектов, когда исходная изыскательская информация собирается еще во многом в соответствии со старой технологией изысканий, а также при разработке проектов реконструкции автомобильных дорог, каналов и т.д.

При наличии крупномасштабных топографических планов и карт часто оказывайся весьма эффективным создание ЦММ с массивом исходных точек, размещаемых на горизонталях с регистрацией их плановых координат дигитайзером через определенные интервалы длины

Массив таких может быть сформирован также в ходе рисовки горизонталей стереофотограмметрическом приборе. Весьма перспективным для создания ЦММ данного типа является использование сканирующих дигитайзеров — автоматов и коордиметров.

При автоматизированном проектировании инженерных сооружений широко используют также цифровые модели на структурных линиях (структурные ЦММ), размещаемых по характерным изломам местности и с учетом ее ситуационных особенностей. Эти ЦММ обладают наименьшей исходной информационной плотностью точек местности.

Структурные ЦММ используют главным образом при невысокой степени автоматизации процесса сбора и регистрации исходной информации (например, при использовании материалов обычной тахеометрической съемки, при ручной либо полуавтоматической фотограмметрической обработке снимков, при дигитализации топографических планов и карт и т. д.).

В зависимости от вида исходного материала, используемого для формирования ЦММ, в практике автоматизированного проектирования применяют и другие виды нерегулярных цифровых моделей, например, ЦММ, построенных на линиях, параллельных координатным осям стереофотограмметрического прибора, при использовании для формирования массивов точек материалов аэрофотосъемок.

Статистические ЦММ предполагают в своей основе нелинейную интерполяцию высот поверхностями второго, третьего и т. д. порядков. При создании массива исходных данных статистической ЦММ точки для ее формирования выбирают в зависимости от случайного распределения, близкого к равномерному.

Статистические модели являются во многом универсальными. Сфера их применения весьма широка и не ограничивается какими-либо категориями рельефа местности, наличием того или иного исходного материала создания ЦММ и наличием тех или иных приборов.

ЗАДАЧИ, РЕШАЕМЫЕ С ИСПОЛЬЗОВАНИЕМ ЦИФРОВЫХ И МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

В рамках системного автоматизированного проектирования (САПР) объектов строительства с помощью цифровых и математических моделей решается широкий круг инженерных задач, которые ранее частично находили решение другими методами и средствами:

оптимальное пространственное трассирование автомобильных дорог, лесовозных дорог и каналов. Решение этой актуальной задачи с привлечением математического аппарата оптимизации проектных решений стало возможным благодаря развитию методов цифрового и математического моделирования местности;

получение продольных профилей Земли по оси вариантов трассы, запроектированных с использованием крупномасштабных топографических планов. В рамках изысканий при традиционном проектировании продольный профиль по оси трассы получали в результате выполнения трудоемкого комплекса полевых геодезических работ, как правило, средствами традиционной наземной геодезии (трассирование, закрепление трассы, разбивка пикетажа, двойное геометрическое нивелирование и т.д.);

получение поперечных профилей Земли. Эта работа при традиционных изысканиях выполнялась, как правило, методом тригонометрического нивелирования;

получение продольных по оси трассы и поперечных инженерно-геологических разрезов. При традиционных изысканиях эту совершенно необходимую для проектирования информацию получали в результате выполнения комплекса чрезвычайно трудоемких и дорогих инженерно-геологических работ путем механического бурения, устройства расчисток и т. д.;

получение исходной инженерно-гидрологической информации для проектирования водопропускных сооружений и системы поверхностного водоотвода (площади водосборов, живые сечения, уклоны логов и их склонов, математическое моделирование стока ливневых и талых вод и т. д.);

проектирование системы дорожного поверхностного водоотвода (кюветы, быстротоки, нагорные и водоотводные канавы и т. д.);

решения задачи распределения земляных масс и подсчеты объемов земляных работ;

решение задач вертикальной планировки при проектировании площадей, городских улиц и дорог и аэродромов;

пространственное моделирование полотна автомобильных дорог и прилегающего ландшафта. Решение этой задачи широко используют при ландшафтном проектировании автомобильных дорог для обеспечения зрительной плавности и ясности трассы и обеспечения гармоничного вписывания полотна автомобильных дорог в прилегающий ландшафт с обеспечением высоких уровней удобства и безопасности движения;

проектирование транспортных развязок автомобильных дорог в одном и разных уровнях.

Развитие и совершенствование методов цифрового и математического моделирования местности во многом предопределили и повлияли на изменение технологии и методов изысканий и проектирования объектов инженерного строительства, и дальнейший прогресс проектно-изыскательского дела невозможен без широкого использования в ходе выработки проектных решений, их оценки и корректировки цифровых и математических моделей местности.

Ориентирование линий. Азимуты, румб, дирекционный угол

Ориентировать линию на местности - значит определить ее направление относительно некоторого начального направления. Для этого служат азимуты А, дирекционные углы a, румбы r. За начальные принимают направления истинного меридиана Nи, магнитного меридиана Nм и направление Nо, параллельное осевому меридиану или оси Х системы прямоугольных координат (рис.8.1).

Азимутом называют горизонтальный угол, отсчитываемый от северного направления меридиана по ходу часовой стрелки до ориентируемого направления. Азимуты изменяются в 0° до 360° и бывают истинными или магнитными. Истинный азимут А отсчитывается от истинного меридиана, а магнитный Ам - от магнитного.

Дирекционный угол a - это горизонтальный угол, отсчитываемый от северного направления осевого меридиана или линии параллельной ему (+Х) по ходу часовой стрелки до направления ориентируемой линии.

Угол d, отсчитываемый от северного направления истинного меридиана N до магнитного меридиана Nм, называется склонением магнитной стрелки.Склонение северного конца магнитной стрелки к западу называют западным и считают отрицательным -d, к востоку - восточным и положительным +d.

Угол g между северными направлениями истинного N и параллелью осевого Nо меридианов называется зональным сближением меридианов. Если параллель осевого меридиана расположена восточнее истинного меридиана, то сближение называется восточным и имеет знак плюс. Если сближение меридианов западное, то его принимают со знаком минус. Если известны долготы меридианов, проходящих через точки А и В, то сближение меридианов можно найти по приближенной формуле:

g = Dl sin j, (8)

где Dl- разность долгот меридианов, проходящих через точки А и В.

Румб - горизонтальный острый угол отсчитываемый от ближайшего северного или южного направления меридиана до ориентируемого направления. Румбы имеют названия в соответствии с названием четверти, в которой находится линия, т.е.: северо-восточные СВ, северо-западные СЗ, юго-западные ЮЗ, юго-восточные ЮВ. На рис. 8.2 показаны румбы линий О-СВ, О-ЮВ, О-ЮЗ, О-СЗ и зависимость между дирекционными углами и румбами этих линий.

Географические координаты (долгота lи широта j) являются обобщенным понятием астрономических и геодезических координат и используются в случаях, когда нет необходимости учитывать разницу между названными координатами. Астрономические широту и долготу определяют с помощью специальных приборов относительно уровенной поверхности и направления силы тяжести. При проецировании астрономических координат на поверхность земного референц-эллипсоида получают геодезические широту и долготу.

Прямоугольные местные координаты являются производными от зональной системы координат Гаусса-Крюгера (см. п.7) и распространяются на небольшой по площади территории. Ось абсцисс совмещают с меридианом некоторой точки участка либо ориентируют параллельно основным осям инженерных сооружений. Координатные четверти нумеруют по часовой стрелке и именуют по сторонам света: I-СВ, II-ЮВ, III-ЮЗ, IV-СВ.

Полярная система координат определяет положение точки на плоскости полярным горизонтальным углом, отсчитываемым от некоторого начального направления, и горизонтальным проложением.

Спутниковые системы определения координат (российская Глонасс и американская GPS), в состав которых входят: комплекс наземных станций автоматического наблюдения за спутниками, искусственные спутники Земли с радиусом орбит около 26 000 км и приемная аппаратура потребителей.

В основу этой системы положено поперечно-цилиндрическая равноугольная проекция Гаусса-Крюгера (названа по имени немецких ученых ее предложивших). В этой проекции поверхность земного эллипсоида меридианами делят на шестиградусные зоны и номеруют с 1-й по 60-ю от Гринвичского меридиана на восток (рис.7). Средний меридиан шестиугольной зоны принято называть осевым.

Топографический план - это уменьшенная ортогональная проекция местности на горизонтальную плоскость.

Картой называется построенное в картографической проекции с учетом кривизны Земли, уменьшенное, обобщенное изображение Земли или отдельных ее частей.

Профиль представляет уменьшенное изображение вертикального разреза земной поверхности по заданному направлению. Профили используют для проектирования и строительства линейных инженерных сооружений.

Отличительные признаки плана и карты:

1) На планах изображается меньшая площадь, нет искажений длин линий и углов.

2) На планах не учитывается кривизна Земли.

3) На планах используют более крупные масштабы: 1:500, 1:1000, 1:2000, 1:5000;

на картах - 1:10000, 1:25000, 1:50000, 1:100000.

4) На планах нет параллелей и меридианов, а имеется только координатная сетка.

5) Различается номенклатура, т.е. система разграфки и обозначений отдельных листов карт и планов.

Масштаб - отношение длины отрезков на планах или картах к горизонтальному проложению этого отрезка на местности. Масштабы бывают: а) численный (в виде дроби), б) линейный (в виде линии), в) поперечный, позволяющий строить на чертежной бумаге с помощью измерителя и масштабной линейки отрезки с погрешностью равной 0,1 мм.

Под точностью масштаба понимают отрезок на местности соответствующий минимальному расстоянию на плане в 0,1 мм. Например, точность масштаба 1:500 соответствует 0.05м.

Полевые проверки и юстировки уровенных нивелиров.

1. Ось круглого уровня должна быть параллельна оси вращения нивелира.

При проверке, подъемными винтами подставки пузырек круглого уровня приводят в нуль-пункт и верхнюю часть нивелира поворачивают на 180° вокруг оси ращения нивелира. Если пузырек остался в нуль-пункте -условие выполнено. Если же отклонился, вращением юстировочных винтов его возвращают к центру ампулы до половины дуги отклонения. Проверку повторяют.

2. Горизонтальная нить сетки должна быть перпендикулярна к оси вращения нивелира. Вращая зрительную трубу наводящим винтом, следят, изменяется ли отсчет при перемещении изображения рейки от одного края поля зрения к другому. Если отсчет изменяется больше чем на 1 мм, диафрагму с сеткой необходимо развернуть в требуемое положение, ослабив крепящие ее винты.

3.Ось цилиндрического уровня должна быть параллельна визирной оси зрительной трубы. Это условие, называемое главным, проверяют двойным нивелированием пары точек способом "из середины" и "вперед"(рис.33).

Способы съемки ситуации

При съемке способом прямоугольных координат, положение точки 1 определено координатами Х = 72.4 м, У = 9.8 м от линии теодолитного хода 1-2. Приложив нулевой штрих рулетки к углу дома (точка 1), на ленту расположенную на линии 1-2 теодолитного хода опускают перпендикуляр и отсчитывают его длину по рулетке (9.8 м), по ленте - расстояние от пункта 1 съемочного обоснования до основания перпендикуляра (72.4 м). Перпендикуляры длиной до 4...8 в зависимости от масштаба съемки восстанавливаются визуально, а при использовании эккера могут быть увеличены примерно в пять раз. Эккер - прибор для построения на местности прямых углов.

Способом линейных засечек определено положение второго угла дома (точки 2). Для этого на местности измерено расстояния 10.6 и 9.8 м от опорных точек на линии с абсцисами соответственно 54.1 и 64.0. Угол дома на плане окажется в точке пересечения дуг с радиусами измеренных расстояний.

Способом угловой засечки на плане может быть получена точка 3. Для этого измерены теодолитом углы 33 35' и 65 05'.

Способ полярных координат предусматривает измерение на местности (точка 4) полярного угла (70 00') и его стороны (35.3 м).

Способ створа (вертикальная плоскость через две точки) использован при съемке точки пересечения ручьем линии теодолитного хода (точка 5). Расстояние (10.5 м) измерено по створу от пункта 1.

Способ обмера элементов ситуации применяют для контроля полевых измерений и графических построений на плане.

41 Тахеометрическая съемка, используемые приборы и формулы.

Сущность тахеометрической съемки заключается в том, что плановое положение характерных (реечных) точек местности определяется полярным способом от линии теодолитного хода, а их высотное положение определяется одним из двух методов: геометрическим или тригонометрическим нивелированием. Расстояние от прибора до реек зависит от масштаба составляемого топоплана и для масштаба 1:1000 - допускается до 150 м, а между соседними реечными точками менее 35 м.

Результаты съемки наносятся на план при помощи транспортира с погрешностью превышающей 8 минут, а полярные расстояния до реечных точек определяются на местности по нитяному дальномеру со средней относительной погрешностью DD/D = 1/200. Для сравнения отметим, что относительные погрешности измерений расстояний землемерной лентой или 20-метровой рулеткой составляют порядка 1/2000, шагами - 1/20. При определении расстояний одну из дальномерных нитей совмещают с началом дециметрового деления на рейке (обычно с 1000 мм), а по второй дальномерной нити берут отсчет. Разность отсчетов на рейке по верхней и нижней дальномерным нитям умноженная на коэффициент дальномера, равный 100, и будет соответствовать расстоянию от прибора до рейки.

Тогда из прямоугольного треугольника (рис.41.2), у которого определены D и n, так называемое "неполное" превышение h'= D sinn = D' cosn sinn = (1/2)D' sin2n или

h'= d tgn = D' cos2n sinn/cosn = (1/2)D'sin2n.

На равнинной местности при углах наклона n < 5 "неполное" превышения можно вычислять по приближенной формуле: h'= D' sinn.

Высоты реечных точек, определяемых тригонометрическим нивелированием, вычисляются по формуле: Hj= Hст+ h' + I - Vj.

Если высота наведения Vj равна высоте прибора I, то формула вычисления высот упШиротой (?) точки называется угол, образованный

отвесной линией проходящей через эту точку и

плоскостью экватора. Изменяется в пределах до 90'

(рис.).

Долготой называется двугранный угол,

образованный плоскостями, проведёнными через

данную точку и начальный (гринвечиский) меридиан.

Изменяется т 0' до 180'. ЗВ – восточная долгота (+), ВЗ –

западная долгота (-).рощается Hj= Hст+ h'.

Меридианы – это линии пересечения уровенной

поверхности плоскостями, проходящими через ось

вращения Земли, т.е. плоскостями долгот.

Параллели – это линии пересечения уровенной

поверхности плоскостями, перпендикулярными оси

вращения Земли, т.е. плоскостями широт.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]