Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Toe_Otvety_2.doc
Скачиваний:
17
Добавлен:
26.09.2019
Размер:
1.08 Mб
Скачать

35) Взаимная индукция. Коэффициент связи.

Магнитное поле вокруг отдельного проводника создается протекающим по нему током. Следовательно, и полный магнитный поток  L будет связан с собственным током проводника i

 L=Li.

(1)

Коэффициент L , связывающий между собой ток и потокосцепление, называется коэффициентом самоиндукции или индуктивностью цепи. Очевидно, что он зависит от геометрической формы и размеров цепи, а также от свойств среды, в которой она находится, т.е. L=F(g1g2,...gn,  ) , где gk - это некоторые геометрические параметры, а  - магнитная проницаемость.

Индуктивность измеряется в генри (Гн=Вб/А).

Индуктивность цепи принципиально является положительной величиной L>0, а при постоянных геометрических параметрах и магнитной проницаемости она представляет собой некую константу. Кроме того, она не может быть равной нулю, т.к. это означало бы отсутствие магнитного поля вокруг проводника с током. Ее можно только уменьшить, например, максимальным сближением проводников с одинаковым током протекающим в противоположных направлениях.

Любое изменение  L по закону электромагнитной индукции должно приводить к появлению ЭДС

.

(2)

Электродвижущая сила eL называется ЭДС самоиндукции, т.к. наводится (индуктируется) собственным магнитным потоком или потоком самоиндукции  L проводника.

Из выражения (2) следует, что ЭДС самоиндукции может возникать как при изменении тока в проводнике, так и при изменении индуктивности, т.е. геометрических параметров цепи и свойств среды.

В случае, если L=const выражение (2) упрощается

.

(3)

40) Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

Принцип работы трансформатора

В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.

В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.

Режимы работы трансформатора(не надо на всякий случай)

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Для трансформатора в режиме активной нагрузки справедливо равенство:

U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Уравнения идеального трансформатора

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:

P1= I1*U1 = P2 = I2*U2,

где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

Уравнения идеального трансформатора

Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток[7]. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков[8]. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:

Где

P1 — мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,

P2 — мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения.[9] Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило

справедливо также и для вторичной цепи: .

41) Составление схемы замещения. Систему уравнений (2.23)...(2.25), описывающую электромагнитные процессы в трансформаторе, можно свести к одному уравнению, если учесть, что Е1=kЕ2, и положить

При этом параметры Rm и Хт следует выбрать так, чтобы в режиме холостого хода, когда ЭДС Е1 практически равна номинальному напряжению Ul, ток

по модулю равнялся действующему значению тока холостого хода, а его мощность — мощности, забираемой трансформатором из сети при холостом ходе.

Решим систему уравнений (2.23)...(2.25) относительно первичного тока

В соответствии с уравнением (2.31) трансформатор можно заменить схемой замещения (рис. 2.18).

Эквивалентное сопротивление этой схемы

Рис. 2.18. Схема замещения трансформатора

42)

43) Определение параметр. Пас.4-х полюсника.

При определении коэффициентов четырехполюсника расчетным путем должны быть известны схема соединения и величины сопротивлений четырехполюсника. Как было отмечено ранее, пассивный четырехполюсник характеризуется тремя независимыми постоянными коэффициентами. Следовательно, пассивный четырехполюсник можно представить в виде трехэлементной эквивалентной Т- (рис. 3,а) или П-образной (рис. 3,б) схемы замещения.

Для определения коэффициентов четырехполюсника для схемы на рис. 3,а с использованием первого и второго законов Кирхгофа выразим   через   :

 ; (9)

Данная задача может быть решена и другим путем. При   и   , а   и   (короткое замыкание на вторичных зажимах)

 .

Из схемы на рис. 3,а

 .

Следовательно,   .

Таким образом, получены те же самые результаты, что и в первом случае.

Коэффициенты четырехполюсника для схемы на рис. 3,б могут быть определены аналогично или на основании полученных для цепи на рис. 3,а с использованием рассмотренных ранее формул преобразования “ звезда-треугольник”.

Из вышесказанного можно сделать вывод, что зная коэффициенты четырехполюсника, всегда можно найти параметры Т- и П-образных схем его замещения.

Рассмотрим действие конденсатора, если к его клеммам подключён идеальный источник синусоидального тока. Поскольку направление тока в источнике периодически изменяется на противоположное, конденсатор относительно общей шины будет заряжаться то до положительного напряжения, то до отрицательного.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]