Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по курс. проекту Последняя 17.05.11.doc
Скачиваний:
37
Добавлен:
17.11.2019
Размер:
18.4 Mб
Скачать

3. Детальный расчет проточной части

В курсовом проекте выполняется детальный расчет пяти ступеней турбины: первых двух (включая регулирующую) и последних трех. Мето-дики детального расчета одновенечной и двухвенечной ступеней по среднему диаметру приведены в Приложениях I, II. Здесь следует обратить внимание на следующие детали.

Расчет производится от параметров торможения, т. е. с учетом кине-тической энергии потока на выходе из предыдущей ступени. При этом располагаемый теплоперепад ступени от параметров торможения (т. е. с учетом энергии выходной скорости из предыдущей ступени), кДж/кг:

,

где h0 – располагаемый теплоперепад ступени от статических параметров, найденный в предварительном расчете (см. раздел 2), кДж/кг; С0 – абсо-лютная скорость на входе в ступень (это скорость С2 на выходе из преды-дущей ступени), м/с; – коэффициент использования этой скорости, ≈ sin2α2 ≈ 0,8–1,0. Для регулирующей и первой нерегулируемой ступени = 0. По мере расчета строится реальный процесс расширения в HS диаграмме, рис. I.2, II.2.

Проходная площадь сопловых решеток определяется по-разному в зависимости от числа Маха:

при M1t > 1

,

при M1t < 1

.

При сверхзвуковом истечении необходимо учитывать отклонение потока в косом срезе по формуле Бэра. Параметры следует определять очень точно, лучше по электронным таблицам, иначе можно получить абсурдные результаты. При числах Маха М ≤ 1,1 отклонением можно пренебречь и принимать угол выхода потока из сопловой решетки .

В современных турбинах применяются цилиндрические бандажи, поэтому высоты рабочих, а в двухвенечных ступенях и поворотных лопаток определяются с учетом перекрыш, рис. I.1:

,

,

,

где – суммарная перекрыша, табл. I.1.

По найденным высотам вычисляются эффективные углы, град:

Профили лопаток выбираются по углам входа–выхода потока и чис-лам Маха (Приложение XI). Для сопловых лопаток это углы α0, α1эф и М1t, для рабочих – β1, β2эф и М2t. Необходимо обратить внимание на правиль-ный выбор хорд b1 и b2 для профилей сопловых и рабочих лопаток сту-пени. Размер хорды определяет напряжение изгиба в лопатке. Чем больше хорда, тем меньше изгибающие напряжения, тем прочнее лопатка. С дру-гой стороны, с увеличением хорды возрастают профильные потери, снижа-ется КПД ступени. Поэтому значение хорды по большому счету должно определяться из прочностного расчета лопатки. Поскольку в рамках курсо-вого проекта расчет на прочность всех лопаток не производится, значения хорд b1 и b2 целесообразно принимать по чертежу заданного прототипа. На чертеже прототипа выбирается ступень с близкими высотами лопаток и для нее определяются соотношения хорды и высоты b1/l1 и b2/l2. Прини-мая эти же соотношения, по известным высотам l1 и l2 рассчитываемой ступени определяют их хорды b1 и b2. Нередко принимают одинаковые хорды сопловых, а также рабочих лопаток на протяжении какого-то отсека (ЧВД, например). Хорды сопловых лопаток могут составлять b1 = 50–100 мм, рабочих лопаток b2 = 30–80 мм. Число лопаток должно быть целым.

Поэтому принятые значения хорды и шага в дальнейшем коррек-тируются. Распространенной ошибкой здесь является выбор хорды напрямую из характеристик профилей (Приложение XI).

Особенностью расчета промежуточных ступеней является то, что в предварительных расчетах уже определены средние и корневые диаметры на всем протяжении проточной части (раздел 2). Поэтому высота рабочих лопаток не вычисляется по уравнению неразрывности, а опреде-ляется как разность найденных диаметров:

,

где dср и dk – средний и корневой диаметры ступеней; – сум-марная перекрыша, табл. I.1.

Эффективный угол выхода из сопловой решетки определяется по найденной высоте:

Здесь степень парциальности е подбирается такой, чтобы обеспе-чить значение угла ≥ 8о.

Относительный лопаточный КПД ηол определяется по располагаемой энергии Е0 = χ0С02/2000 + h0 χ2∙∆hвс = χ2hвс. Здесь χ0 = 0,8–1,0 – коэффициент использования выходной скорости предыдущей ступени в данной ступени, χ2 =0,8–1,0 – коэффициент использования выходной ско-рости данной ступени в последующей. Для последней ступени турбины или цилиндра, а также для регулирующей ступени χ2 = 0. Для регули-рующей ступени и первой нерегулируемой χ0 = 0. КПД ηол определяется двумя способами: через потери энергии и по треугольникам скоростей. Значения ηол, вычисленные двумя способами, не должны отличаться более, чем на 1,5 %.

После определения дополнительных потерь на трение диска, от парциальности, утечек и влажности вычисляется относительный внутренний КПД ступени:

ηоi = ηол – ξтр – ξпарц – ξут – ξвл.

В ступенях с полным подводом пара (e = 1) отсутствует потеря от парциальности ξпарц, а в ступенях, работающих в области перегретого пара, отсутствует потеря от влажности ξвл.

В конечном итоге определяется полезно использованный тепло-перепад и внутренняя мощность ступени:

По мере расчета строится реальный процесс расширения ступени с учетом всех потерь, рис. I.2, II.2. К расчету каждой ступени прилагается эскиз теплового процесса со значениями основных параметров пара и тре-угольники скоростей, построенные в масштабе, рис. I.3, II.3.