Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы учета Курс лекций.doc
Скачиваний:
22
Добавлен:
19.11.2019
Размер:
4 Mб
Скачать

6.5. Электромагнитные расходомеры

Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся (проводящей) жидкости с магнитным полем. Это взаимодействие подчиняется закону электромагнитной индукции, согласно которому в движущемся проводнике, пересекающем магнитное поле, индуцируется ЭДС, величина которой пропорциональна скорости движения проводника. В данном случае в качестве проводника выступает поток проводящей жидкости. Для измерения возникающей ЭДС через стенки трубы изолированно от нее выводятся два электрода. Схема работы электромагнитного расходомера приведена на Рисунке 10.

Разность потенциалов Е, на электродах, расположенных на расстоянии D, равном внутреннему диаметру трубы, определяется из выражения

Е = B*D*Vcp, где В – магнитная индукция, а Vcp – средняя скорость жидкости.

Если магнитное поле создается электромагнитом, питаемым переменным током частотой f, то

E = 4*Bмакс*Gv*sincωt/πD (6)

Электромагнитные расходомеры имеют много достоинств. Они могут применяться для измерения любых, сколь угодно больших расходов жидкости в трубопроводах диаметром начиная от 2 мм и выше. Их показания не зависят от вязкости и плотности среды. Шкала прибора линейна, а динамический диапазон достигает 100:1. Быстродействие прибора достаточно высоко. Преобразователь расхода не имеет частей, выступающих внутрь трубы, и не создает дополнительной потери давления. Влияние местных сопротивлений значительно меньше, чем расходомеров других типов.

Рисунок 10 – Схема работы электромагнитного расходомера

Большинство выпускаемых электромагнитных расходомеров пригодно для измерения расхода жидкостей с электропроводностью не менее 10-5×Ом-1 × см-1, что соответствует электропроводности водопроводной воды.

6.6. Ультразвуковые расходомеры

Ультразвуковые расходомеры основаны на измерении, зависящем от расхода, того или иного акустического эффекта, возникающего при прохождении ультразвуковых колебаний через поток жидкости или газа.

Основными элементами первичных преобразователей ультразвуковых расходомеров являются излучатели и приемники ультразвуковых колебаний. Их действие основано на пьезоэлектрическом эффекте, заключающемся в том, что при сжатии и растяжении в определенных направлениях кристаллов (пьезоэлементов) на их поверхностях возникают электрические заряды (прямой пьезоэффект). В этом случае пьезоэлемент работает как приемник ультразвуковых колебаний. Если же к этим поверхностям приложить разность потенциалов в виде электрического импульса, то пьезоэлемент растянется или сожмется и начнет работать как излучатель ультразвуковой волны. Это явление называется обратным пьезоэффектом. В качестве пьезодатчиков применяются различные керамические материалы (титанат бария, цирконат титаната свинца и т.д.). Пьезоэлементы обычно изготавливаются в виде дисков диаметром 10-20 мм, которые необходимо снабдить электродами, которые создаются покрытием специально обработанные поверхности слоем металла (как правило, серебра).

Существует несколько способов измерения расхода с помощью ультразвука (частотный, фазовый, корреляционный, с использованием эффекта Доплера). Однако, наибольшее распространение получил времяимпульсный ультразвуковой метод, принцип действия которого представлен на Рисунке 11.

Время прохождения ультразвукового сигнала по акустическому пути L от излучателя 1 к приемнику 2 и от излучателя 2 к приемнику 1 будет равно соответственно

t1-2= L/(C-V*Cosφ)

t2-1= L/(C + V*Cosφ),

где С - скорость ультразвука в среде.

Рисунок 11 – Схема работы времяимпульсного ультразвукового расходомера

Разница во времени прохождения сигнала в «прямом» и «обратном» направлениях:

Δt = (2L*V*Cosφ) / (С2 - V2*Cos2φ)

Поскольку С2 >> V2*Cos2φ

Δt = (2L*V*Cosφ) / С2 или

V = (Δt*C2) / (2L*Cosφ)

Принимая во внимание, что L = D / Sinφ, a Gv = V* π*D2 /4 получим

Gv = 2* π*D*Δt*C2*tgφ

Таким образом, зная внутренний диаметр трубопровода, угол наклона акустической ocи к оси трубы, скорость ультразвука в конкретной среде и измерив разницу во времени прохождения сигнала в «прямом» и «обратном» направлениях, можно определить объемный расход среды в трубопроводе.

Величина Δt незначительна и составляет обычно от нескольких единиц до нескольких десятков наносекунд и ее измерение с достаточной точностью при одном проходе сигнала в «прямом» и «обратном» направлениях произвести сложно. Поэтому измерения производят организуя так называемое «синхрокольцо», при котором измеряют время прохождения сигнала в каждом направлении сотни и тысячи раз, предполагая, что скорость потока за это время не из меняется.

Время – импульсный ультразвуковой метод очень хорош при измерении расходов на трубопроводах больших диаметров. Однако, он требует значительных прямолинейных участков трубопровода (15Dy до и 10 Dy после места установки прибора). Он не создает дополнительных потерь давления, обладает широким динамическим диапазоном и высокой точностью, но весь ма чувствителен к вибрационным и ударным помехам.