Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

brechignac_f_desmet_g_eds_equidosimetry_ecological_standardi

.pdf
Скачиваний:
2
Добавлен:
19.11.2019
Размер:
5.12 Mб
Скачать

TOTAL

 

121,269

100,00

 

 

PEAT TOGETHER WITH MYCELIUM OF FUNGI

 

0-5 cm

20000

4270

85,400

51,34

5-10 cm

50000

527

26,350

15,84

10-15 cm

60000

500

30,000

18,04

15-20 cm

60000

218

13,080

7,86

20-25 cm

70000

100

7,000

4,21

25-30 cm

75000

60

4,500

2,71

including mycelium (in all peat

70

800000

56,000

33,67

layers)

 

 

 

 

TOTAL

335000

166,330

100,00

(peat with fungi mycelium)

 

 

 

 

263

Table 2. Distribution of 137Cs activity in ecosystem of Cladonio-Pinetum, density of ground deposition of 137Cs – 46,4 kBq·m-2 (1,25 Ci·km-2 )

 

 

 

Mass, kg·ha-1

137Cs specific

137Cs activity,

Part of 137Cs total activity, %

Ecosystem component

 

activity, Bq·kg-1

MBq·ha-1

 

Tree canopy

 

 

23402

9,791

50,56

Wood

 

 

8547

126

1,077

5,56

Bark

 

 

1155

700

0,809

4,18

Branches

 

 

4774

350

1,671

8,63

Annual shoots

 

150

1210

0,182

0,94

Needles

 

 

2079

385

0,800

4,13

Roots thick

 

 

6110

730

4,460

23,03

Roots thin

 

 

587

1350

0,792

4,09

Juvenile tree layer

 

5,9

800

0,004

0,026

Undergrowth layer

 

22

290

0,006

0,031

Grass–dwarf-shrub layer*

*288

*418

0,120

0,62

Lichen layer

 

 

1995,8

8,197

43,586

Sublayer of epigeous lichens

1995

8,192

43,56

Cladina arbuscula ssp. mitis

1400

4180

5,852

30,22

Cladonia uncialis

 

360

4300

1,548

7,99

Cladonia gracilis

 

180

4400

0,792

4,09

Cladonia subulata

 

55

4440

0,244

1,26

Sublayer of epiphytic lichens

0,8

5800

0,005

0,026

(Hypogymnia physodes)

 

 

 

 

Moss layer

 

 

70,5

6800

0,479

2,48

(Polytrichum piliferum)

 

 

 

 

Layer

of

Macromycetes

4,76

0,524

2,708

(fruitbodies)

 

 

 

 

 

Cortinarius sanguineus

0,84

160000

0,134

0.69

264

Lactarius rufus

0,96

100000

0,096

0,50

 

Cantharellus cibarius

0,14

11120

0,002

0,008

 

Siullus variegatus

0,87

79200

0,07

0,36

 

Siullus bovinus

0,66

58700

0,04

0,20

 

Boletus badius

0,41

75700

0,03

0,16

 

Paxillus involutus

0,88

174000

0,153

0,79

 

TOTAL

19,367

100,00

 

 

SOIL TOGETHER WITH MYCELIUM OF FUNGI

 

 

Forest litter

16400

76,310

14,44

 

Forest litter semi-decomposed

3200

293

0,938

0,18

 

Forest litter decomposed

13200

5710

75,372

14,26

 

Mineral soil layers

4935600

452,274

85,57

 

ÍŲ 0-2 cm

228000

1250

285,000

53,92

 

ÍŲ 2-4 cm

290800

330

95,964

18,16

 

ÍŲ 4-6 cm

288400

110

31,724

6,00

 

ÍŲ 6-8 cm

338000

35

11,830

2,24

 

ÍŲ 8-10 cm

289600

20

5,792

1,10

 

ÍŲ 10-12 cm

317200

14

4,444

0,84

 

г 12-14 cm

332400

6

1,994

0,38

 

г 14-16 cm

363200

5

1,816

0,34

 

г 16-18 cm

343200

6

2,059

0,39

 

г 18-20 cm

335200

6

2,011

0,38

 

г 20-22 cm

315200

9

2,837

0,54

 

г 22-24 cm

366000

5

1,830

0,35

 

г 24-26 cm

392000

6

2,352

0,44

 

г 26-28 cm

362800

3

1,088

0,21

 

г 28-30 cm

373600

4

1,494

0,28

265

 

 

 

 

 

266

including mycelium

1200

132,035

 

(in all soil layers)

 

 

 

 

TOTAL

4012800

528,543

100,00

(soil with fungi mycelium)

 

 

 

 

*Note: average-weighted data on whole layer.

Table 3. Distribution of 137Cs activity in ecosystem of Molinio-Pinetum, density of ground deposition of 137Cs – 580,0 kBq·m-2 (15,68 Ci·km-2)

Ecosystem component

Mass, kg·ha-1

137Cs specific

137Cs activity,

Part of 137Cs total activity, %

 

 

activity, Bq·kg-1

MBq·ha-1

 

TREE CANOPY (total)

252552

1073,8

49,93

² layer (Pinus sylvestris)

248151

1057,5

49,17

Wood

185539

2690

499,1

23,21

Bark

9416

13860

130,5

6,07

Branches alive

15213

10090

153,5

7,14

Branches dried up³

8075

3678

29,7

1,38

Needles

7879

21550

169,8

7,90

Roots

22029

3400

74,9

3,48

²² layer (Betula pubescens)

4401

16,3

0,76

Wood

1875

1760

3,3

0,15

Bark

230

5645

1,3

0,06

Branches

1020

6470

6,6

0,31

Leaves

235

11060

2,6

0,12

Roots

1041

2400

2,5

0,12

Moss layer

20802

48120

1001,0

46,55

(Pleurozium schreberi)

 

 

 

 

Layer of epiphytic lichens

32,8

57920

1,9

0,09

(Hypogymnia physodes)

 

 

 

 

Grass–dwarf-shrub layer

1518

66,7

3,10

Vaccinium myrtillus

1270

40860

51,9

2,41

aboveground phytomass

 

 

 

 

underground phytomass

217

44300

9,6

0,45

Dryopteris carthusiana

20

162670

3,2

0,15

aboveground phytomass

 

 

 

 

underground phytomass

11

180000

2,0

0,09

Layer of Macromycetes

2,67

7,1

0,33

(fruitbodies)

 

 

 

 

Suillus variegatus

0,4

2258400

0,9

0,04

Paxillus involutus

1,1

3500000

3,9

0,18

Russula paludosa

0,3

1240000

0,4

0,02

Xerocomus badius

0,35

2800000

1,0

0,05

Lactarius rufus

0,3

2900000

0,9

0,04

Cantharellus cibarius

0,22

160000

0,04

0,00

TOTAL

2150,5

100,00

 

SOIL TOGETHER WITH MYCELIUM OF FUNGI

 

Forest litter

56911

2282,1

49,68

267

268

Ferest litter noncomposed

2544

14036

35,7

0,78

Forest litter semi-decomposed

21745

50500

1098,1

23,90

Forest litter decomposed

32622

35200

1148,3

25,00

Mineral soil layers

3438022

2311,8

50,32

ÍÅ 0-2 cm

133138

6660

886,7

19,30

ÍÅ 2-4 cm

172018

3270

562,5

12,24

ÍÅ 4-6 cm

211026

1433

302,4

6,58

ÍÅ 6-8 cm

243158

760

184,8

4,02

ÍÅ 8-10 cm

220323

310

68,3

1,49

ÍÅ 10-12 cm

253241

216

54,7

1,19

Å 12-14 cm

272143

140

38,1

0,83

Å 14-16 cm

276190

126

34,8

0,76

Å 16-18 cm

241667

120

29,0

0,63

Å 18-20 cm

234545

110

25,8

0,56

²1 20-22 cm

248182

110

27,3

0,59

²1 22-24 cm

242500

120

29,1

0,63

²1 24-26 cm

240000

100

24,0

0,52

²2Ð 26-28 cm

237391

115

27,3

0,59

²2Ð 28-30 cm

212500

80

17,0

0,37

including mycelium

1200

2258000*

2710,08

58,99

(in all soil layers)

 

 

 

 

TOTAL

3494933

4593,9

100,00

(soil with fungi mycelium)

 

 

 

 

269

The analysis of distribution of the total stock of 137Cs on the components of ecosystem as a whole (with allowance of radionuclide activity in soil and mycelium of mushrooms) also demonstrates the specific geochemical regularities. In particular, the part of 137Cs activity retained by the main forest layer, the tree canopy, in forest ecosystems of Ukrainian Polessye varies in a wide range , from 1,8 % up to 16 % of a total stock of radionuclide in forest ecosystem as a whole. Due to the growth of phytomass of this vegetation layer increase of part of the radionuclide activity retained

by the tree canopy is observed. In ecosystem Molinio-Pinetum the tree canopy contained: for the age to 10 years, 3 % of the total stock of 137Cs of ecosystem, for 30

years 7 %, for 55 years - 15 % [19]. In the Pinus sylvestris tree canopy in automorphic landscapes the observed increase is mainly due to the biomass of trunk wood and bark (40-60 % of a 137Cs sum activity of tree canopy). In hydromorphic landscapes of ombrotrophic bogs in cenosis Ledo-Sphagnetum magellanici the tree canopy of pine retains only 2,03 % of a total stock of 137Cs of ecosystem as a whole, and due to trunk

less than 30 %. In 60-year old forests of cenosis Serratulo-Pinetum pine the tree canopy contained 2-3 % of a total stock of 137Cs of ecosystem and in the oak canopies

of similar age, 6-9 % is due to the greater intensity of radionuclide accumulation [2, 12, 16, 19].

It is necessary to underline that in deciduous forests the intensity of biological migration of 137Cs also increases due to the intensive annual cycling of significant radionuclide activity with litter-fall and its relatively fast decomposition [12].

The layer of undergrowth (living form – shrubs) of the average crown closeness (0,3-0,5) independently from species composition, in forests of Polessye retained only 0,01-0,05 % of a total stock of 137Cs of forest ecosystem; the close indexes are also characteristic for the layer of juvenile trees (up to 0,01 % of the total 137Cs activity of ecosystem) because their insignificant phytomass per unit area.

Grass–dwarf-shrub layer is characterized by various phytomass in forest cenosis in Ukrainian Polessye – from very rarefied (with the sum projective cover 5- 15%) in cenosis Cladonio-Pinetum and Peucedano-Pinetum up to 60 % of projective cover in forested bogs of cenosis Ledo-Sphagnetum magellanici and 95 % in cenosis Molinio-Pinetum. Accordingly a part of the sum of 137Cs activity retained by this layer of vegetation in forests of automorphic landscapes varies from 0,01-0,02 % in cenoses

Cladonio-Pinetum and Peucedano-Pinetum up to 1,0 % in cenosis Molinio-Pinetum sharply increasing up to 2,5-4,0 % in the forests of hydromorphic landscapes as a result of more intensive 137Cs accumulation by all plant species of the layer as well as because essentially smaller relative part of tree canopy in retaining of 137Cs.

Lichen layer consists of two sublayers – epiphytic (on trunks of trees) which part independently from species composition does not exceed 0,01-0,03 % of a sum activity of 137Cs of forest ecosystem, however this sublayer of lichens plays the main role in the interception of 137Cs stemflow. The sublayer of epigeous lichens plays an important role in the formation of phytomass in cenosis Cladonio-Pinetum, where lichens are dominants of undergrowth vegetation of forests, the part of this sublayer reaches 1,5-3 % of a total stock of 137Cs contained in the ecosystem as a whole.

The role of moss layer, the majority of phytocenosis of boreal forests, in retaining of 137Cs by biota is extremely important. As it was shown earlier the part of the sum 137Cs activity circulating in forest ecosystem and retained by layer of

270

green mosses in forests of automorphic landscapes in cenosis Peucedano Pinetum varied from 1% in 10-year's pine forests up to 15% in 50-year's cenosis [19]. In forests of the analyzed automorphic landscapes the part of green moss layer changed from 0,1% in cenosis Cladonio-Pinetum up to 15 % in cenosis Molinio-Pinetum. In hydromorphic landscapes in cenosis Ledo-Sphagnetum magellanici the role of moss layer (from sphagnum mosses) increased up to 35-40% in relation to the total stock of 137Cs content in the forest ecosystem.

Also it should be noted that the role of moss layer is determining, as a biogeochemical barrier, the path of vertical 137Cs migration in all types of forest landscapes – from forest litter to mineral soil layers in automorphic landscapes and from peat litter to peat in hydromorphic ones.

Special attention was paid to studying the role of the mushroom complex in retaining of 137Cs activity in forest ecosystems. During mushroom fruitbodies sampling period the productivity of mushrooms on our experimental plots was low – 6-8 times smaller in comparison with average long-term data on the region [12; 13], therefore in spite of significant 137Cs specific activity in mushrooms fruitbodies, their contribution to retaining of the total 137Cs activity of ecosystem was not so large – 0,1-0,2%. However the part of sum 137Cs activity in mushrooms mycelium deducted from macroblock of soil with forest litter changed from 20 % in forested bog ecosystem of cenosis LedoSphagnetum magellanici up to 40 % in cenosis Molinio-Pinetum.

Thus our calculation has allowed to draw the conclusion that soil (in automorphic landscapes – together with forest litter) contained from 28% of a total stock of radionuclide of ecosystem in cenosis Molinio-Pinetum up to 38 % in cenosis

Ledo-Sphagnetum magellanici and 72% in cenosis Cladonio-Pinetum. The results obtained visibly demonstrate that in conditions when the biological circulation of radionuclide is slow because of unfavorable ecological conditions, as for example in cenosis Cladonio-Pinetum a large part of total stock of radionuclide remains in the soil and is not taken up by vegetation.

It is necessary to underline that the results obtained in this research are in good agreement with data published earlier [5; 19] in which the relative part of soil with forest litter in retaining of 137Cs varied in the limits 60-65 %, including mycelium of mushrooms in this value.

Our research of 137Cs distribution in three forest ecosystems allowed us to draw a conclusion that key components in distribution of this radionuclide in analyzed biogeocenoses were:

in Cladonio-Pinetum – pine tree canopy and epigeous lichen layer;

in Ledo-Sphagnetum magellanici – Sphagnum layer;

in Molinio-Pinetum – pine tree canopy and green moss layer.

So according to the above proposed methodology the heavy metal content was studied in salient key components of ecosystems (table 4).

Analysis of above mentioned data shows that not only 137Cs but also heavy metal content were higher in peak key component. So the distribution of total stock of investigated pollutants should be approximately analogue too. But in other cases essential differences of distribution both in concentrations of pollutants and in its total stock can be observed. Nevertheless, in our mind these regularities of distribution of pollutants are specific and approximately constant in each ecosystem.

Table 4. Average content of 137Cs and heavy metals in some components of different forest ecosystems.

Component

137Cs cont.,

 

Heavy metal content, mg·kg-1 d.w.

 

Bq·kg-1 d.w.

Cu

Zn

Pb

Co

Cladonio-Pinetum

 

 

 

 

 

*Pine tree canopy

385±45

1,17±0,22

9,85±1,12

0,51±0,07

0,03±0,004

(needles)

 

 

 

 

 

*Epigeous lichen layer

4180±50

3,12±0,38

13,54±1,50

1,48±0,17

0,26±0,03

Soil (mineral 0-2 cm)

1250±140

1,54±0,20

3,00±0,44

1,09±0,21

0,028±0,00

Ledo-Sphagnetum magellanici

 

 

 

 

*Sphagnum layer (alive

16100±1900

3,40±0,42

21,3±2,75

4,67±0,55

0,52±0,06

part)

 

 

 

 

 

*Sphagnum layer (dead

11700±2000

2,45±0,29

28,00±3,42

13,65±1,54

0,83±0,11

part)

 

 

 

 

 

Cranberry berries

8600±900

17,75±2,01

12,30±1,23

0,02±0,003

0,01±0,00

Pine tree canopy (needles)2720±300

2,08±0,22

12,04±1,24

0,30±0,05

0,03±0,00

Molinio-Pinetum

 

 

 

 

 

*Pine tree canopy

21550±2300

4,52±0,47

8,04±0,95

0,17±0,02

0,003±0,00

(needles)

 

 

 

 

 

*Green moss layer

48120±5000

30,14±3,21

19,24±2,22

0,94±0,10

0,17±0,02

Bilberry (shoots)

40860±4000

8,50±1,00

13,92±1,44

0,02±0,003

0,013±0,00

Bilberry (berries)

41000±4200

27,08±3,12

28,84±3,24

0,002±0,00

0,012±0,00

Soil (mineral 0-2 cm)

6660±700

2,08±0,31

4,00±0,43

1,09±0,20

0,03±0,003

Note: key components were marked *.

271

272

4. References

1.N. Anuchin. Forest accounting. M., Lesnaya promyshlennost, 1977, 512 pp. (in Russian).

2.I. Bulavik. 137Cs content in soil and arboreal vegetation on various density of radionuclide contamination of the territory. in: Proc. of the conf., Gomel, 1991. pp. 89-99 (in Russian).

3.V. Dolin. Criteria of self-cleaning of terrestrial ecosystems from radioactive contamination. in: Reports of NAS of Ukraine, 1, 2000. pp. 187-190 (in Ukrainian).

4.S. Zonn. Interaction and interdependence of forest vegetation with soils. in: Pochvovedenie, 7, 1956. pp. 80-80 (in Russian).

5.V. Krasnov, V. Nurko, A. Orlov et al. Distribution of 137Cs activity in components of forest biogeocenosis of wet subor. in: Collection of scientific works of the Institute of Forestry of NAS of Belarus, 46, Gomel, 1997. pp. 405-407 (in Russian).

6.V. Myakushko. Pine forests of flat part of Ukraine. Kiev, Naukova dumka, 1978. 256 pp. (in Russian).

7.A. Orlov. The role of sphagnous cover in redistribution of fluxes of potassium and 137Cs in ecosystems of mezo-ombrotrophic bogs. in: Ukrainian botanical journal, 57, 6, 2000, pp. 715-724 (in Ukrainian).

8.A. Orlov, S. Irklienko. The main regularities of 137Cs migration and distribution of its total stock in ecosystems of mezo-ombrotrophic bogs. in: Naukovy visnyk NAU, 20, 1999. pp. 60-68 (in Ukrainian).

9.O. Pushkariov,V. Davydchuk, Yu. Sushchik, I. Shramenko. Evaluation of autorehabilitation capacity of environment. in: Reports of NAS of Ukraine, 2, 2000. pp. 208-213 (in Ukrainian).

10.F. Tikhomirov, A. Shcheglov. Consequences of radioactive contamination of forests in the zone of influence of Chernobyl accident. in: Radiation biology. Radioecology, 37, 4, 1997. pp. 664-672 (in Russian).

11.V. Shubin, I. Maradudin, A. Panfilov. Radioecological classification of forest types. in: Observing information, issue 1-2, Moscow, 1999. 48 pp. (in Russian).

12.A. Shcheglov. Biogeochemistry of technogenic radionuclides in forest ecosystems: on data of 10-years research in the zone of influence of Chernobyl NPP, Moscow, Nauka, 1999. 268 pp. (in Russian).

13.A. Shcheglov et al. To the problem of role of higher macromycetes in biogeochemical migration of 137Cs in forest ecosystems. in: Proceedings Chernobyl-94, vol. 1, 1996. pp. 460-472 (in Russian).

14.A. Yunatov. Foundation of ecological profiles and experimental plots. in: Field geobotany, vol. 3, Moscow-Leningrad, Nauka, 1964. pp. 9-35 (in Russian).

15.P. Bossew, H. Lettner, A. Hubmer. Spatial variability of fallout 137Cs. in: Proc. of the Intern. Symp. on Radioecology «Ten years terrestrial radioecological research following the Chernobyl accident». Eds. M.Gerzabek, G.Desmet, B.J.Howard et al., Vienna, 1996. pp. 179-186.

16.S. Mamikhin, A. Shcheglov. Dynamics of Cs-137 in the forests of the 30-km zone around the Chernobyl nuclear power station. in: Proc. Seminar on the dynamic behaviour of radionuclides in forests, Stockholm, 1992. p. 10.

17.T. Nylén. Uptake, turnover and transport of radiocaesium in boreal forest ecosystem. Dissertation. Uppsala, 1996.

18.R. Olsen, E. Joner and L. Bakken. Soil fungi and the fate of radiocaesium in a soil ecosystem – a discussion of possible mechanisms involved in the radiocaesium accumulation in fungi and the role of fungi as a Cs-sink in the soil. in: Transfer of radionuclides in natural and semi-natural environment. Eds. G.Desmet et al., London-New York, Elsevier Applied Science, 1990. pp. 657-663.

19.A. Orlov, V. Turko, S. Irklienko, V. Krasnov, A. Kalish. The distribution of the total 137Cs activity in biogeocenoses of pine forest of Ukrainian Polessye. in: Proc. of the VI Symposium, vol. 1, Szarvas, 1999. pp. 79-84.