Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
стр 103-113.doc
Скачиваний:
11
Добавлен:
21.11.2019
Размер:
3.61 Mб
Скачать

Искусственные нейронные сети

Искусственные нейронные сети отличаются удивительными свойствами. Они не требуют детализированной разработки программного обеспечения и открывают возможности решения задач, для которых отсутствуют теоретические модели или эвристические правила, определяющие алгоритм решения. Такие сети обладают способностью адаптироваться к изменениям условий функционирования, в том числе к возникновению заранее непредусмотренных факторов. По своей природе НС являются системами с очень высоким уровнем параллелизма.

Нейрокомпьютеры

В нейрокомпьютерах используются принципы обработки информации, осуществляемые в реальных нейронных сетях. Это принципиально новые вычислительные средства с нетрадиционной архитектурой позволяют выполнять высокопроизводительную обработку информационных массивов большой размерности. В отличие от традиционных вычислительных систем нейросетевые вычислители, аналогично нейронным сетям, дают возможность с большей скоростью обрабатывать информационные потоки дискретных и непрерывных сигналов, содержат простые вычислительные элементы и с высокой степенью надежности позволяют решать информационные задачи обработки данных, обеспечивая при этом режим самоперестройки вычислительной среды в зависимости от полученных решений.

Вообще говоря, под термином "Нейрокомпьютер" в настоящее время подразумевается довольно широкий класс вычислителей. Это происходит по той простой причине, что формально нейрокомпьютером можно считать любую аппаратную реализацию нейросетевого алгоритма от простой модели биологического нейрона до системы распознавания символов или движущихся целей. Нейрокомпьютеры не являются компьютерами в общепринятом смысле этого слова. В настоящее время технология еще не достигла того уровня развития, при котором можно было бы говорить о нейрокомпьютере общего назначения (который являлся бы одновременно искусственным интеллектом). Системы с фиксированными значениями весовых коэффициентов - вообще самые узко специализированные из нейросетевого семейства. Обучающиеся сети более гибки к разнообразию решаемых задач. Таким образом, построение нейрокомпьютера - это каждый раз широчайшее поле для исследовательской деятельности в области аппаратной реализации практически всех элементов НС.

В начале 21-го века, в отличие от 40-50-х годов прошлого столетия, есть объективная практическая потребность научиться делать нейрокомпьютеры, т.е. необходимо аппаратно реализовать довольно много параллельно действующих нейронов, с миллионами фиксированных или параллельно адаптивно модифицируемых связей-синапсов, с несколькими полносвязными слоями нейронов. В то же время технология интегральной электроники близка к исчерпанию своих физических возможностей. Геометрические размеры транзисторов больше нельзя физически уменьшать: при технологически достижимых размерах порядка 1 мкм и меньше проявляются физические явления, незаметные при больших размерах активных элементов - начинают сильно сказываться квантовые размерные эффекты. Транзисторы перестают работать как транзисторы.

Для аппаратной реализации НС необходим новый носитель информации. Таким новым носителем информации может быть свет, который позволит резко, на несколько порядков, повысить производительность вычислений.

Единственной технологией аппаратной реализации НС, способной в будущем прийти на смену оптике и оптоэлектронике, является нанотехнология, способная обеспечить не только физически предельно возможную степень интеграции субмолекулярных квантовых элементов с физически предельно возможным быстродействием, но и столь необходимую для аппаратной реализации НС трехмерную архитектуру.

Длительное время считалось, что нейрокомпьютеры эффективны для решения так называемых неформализуемых и плохо формализуемых задач, связанных с необходимостью включения в алгоритм решения задачи процесса обучения на реальном экспериментальном материале. В первую очередь к таким задачам относилась задача аппроксимации частного вида функций, принимающих дискретное множество значений, т. е. задача распознавания образов.

В настоящее время к этому классу задач добавляется класс задач, иногда не требующий обучения на экспериментальном материале, но хорошо представимый в нейросетевом логическом базисе. К ним относятся задачи с ярко выраженным естественным параллелизмом обработки сигналов, обработка изображений и др. Подтверждением точки зрения, что в будущем нейрокомпьютеры будут более эффективными, чем прочие архитектуры, может, в частности, служить резкое расширение в последние годы класса общематематических задач, решаемых в нейросетевом логическом базисе. К ним, кроме перечисленных выше, можно отнести задачи решения линейных и нелинейных алгебраических уравнений и неравенств большой размерности; систем нелинейных дифференциальных уравнений; уравнений в частных производных; задач оптимизации и других задач.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]