Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
урок 1.docx
Скачиваний:
2
Добавлен:
23.11.2019
Размер:
928.63 Кб
Скачать

Глава 2

Рис. 13. Распо­ ложение элек­ тродов при элек- тросонтерапии.

1 - глазничный эле­ ктрод (катод); 2 сосцевидный элек­ трод (анод).

Силу подводимого к больному импульсного тока дозируют по ощущению больным легких покалываний, постукиваний или без­ болезненной вибрации. Выраженность таких ощущений нарастает при включении постоянной составляющей, что приводит к уве­ личению количества электричества, проходящего через ткани больного. Предельно допустимая сила тока при проведении элек- тросонтерапии не должна превышать 8 мА. Ее увеличивают до появления у больного ощущений легкой безболезненной вибра­ ции под электродами. Возникновение неприятных ощущений, жжения под электродами служит сигналом к снижению силы подводимого тока.

Продолжительность лечебной процедуры 20-40 мин. Их про­ водят через день или ежедневно, на курс лечения - 15-20 проце­ дур. При необходимости повторный курс электросонтерапии наз­ начают через 2-3 месяца.

Электростимуляция

Электростимуляция - лечебное применение импульсных токов для восстановления деятельности органов и тканей, утративших нормальную функцию.

Электростимуляцию как лечебный метод воздействия на воз­ будимые структуры (нервная и мышечная ткани), используют не только в физиотерапии, но и реаниматологии (дефибрилляция сердца) и кардиохирургии (носимые и имплантируемые кар­ диостимуляторы). В практике физиотерапевта электростимуляцию применяют для воздействия на поврежденные нервы и мышцы, а также внутренние органы, содержащие в своей стенке гладко- мышечные элементы (бронхи, желудочно-кишечный тракт).

Под влиянием импульсного электрического тока происходит деполяризация возбудимых мембран, опосредованная изменени­ ем их проницаемости. При превышении амплитуды электрических импульсов над уровнем критического мембранного потенциала

82

Глава 2

(КМП) происходит генерация потенциалов действия (спайков). В рамках современных представлений об интегративной деятель­ ности ионных каналов на возбудимой мембране, ее деполяриза­ ция вызывает кратковременное сочетанное открытие (срабатывание) что приводит к увеличению нат­ риевой проницаемости плазмолеммы. В последующем происхо­ дит компенсаторное нарастание калиевой проницаемости мем­ браны и восстанавливается ее исходная поляризация. Основны­ ми параметрами электрических импульсов, деполяризующих возбудимую мембрану, являются амплитуда, длительность,

форма и частота их следования.
Вероятность формирования потенциалов действия зависит

также и от характеристик плазмолеммы, основной из которых является возбудимость. Количественной мерой возбудимости служит величина, обратная интенсивности порогового раз­ дражителя, в ответ на который генерируется спайк. Возбуди­ мость зависит от критического уровня деполяризации (КУД) - величины критического мембранного потенциала, при котором происходит лавинообразное открытие потенциалзависимых Na+- ионных каналов, деполяризация мембраны и инверсия знака мембранного потенциала (формируется потенциал действия).

Возбудимость S нервной и мышечной ткани количественно определяется величиной, обратной силе тока вызывающего пороговое возбуждение нерва или сокращение мышц,

Наряду с возбудимостью, реакции возбудимой мембраны обусловлены также и ее емкостью. Последняя определяет пози­ тивное смещение К У Д при продолжительном электрическом раздражении — феномен аккомодации. Способность к аккомо­ дации объясняют частичной инактивацией -каналов и акти­ вацией -каналов при длительной подпороговой деполяриза­ ции. Ее количественной мерой служит минимальный градиент (критический наклон) — наименьшая крутизна переднего фронта порогового электрического стимула, вызывающего генерацию потенциала действия.

Взаимосвязь параметров воздействующего электрического стимула и реакций возбудимой мембраны определяется закона­ ми электрического раздражения нервных и мышечных волокон.

Молекулярная природа биоэлектрогенеза объясняет поляр­ ный закон раздражения Э.Пфлюгера — раздражение возбуди-

Лечебное применение постоянных и импульсных электрических токов дз

мых тканей обеспечивается только внешним током выходящего направления. Следовательно, при приложении к нерву или мыш­ це двух разнополярных электродов деполяризация возникает только в области катода, т.к. именно здесь локальные ионные токи имеют выходящее направление. Таким образом, при воз­ действии подпороговым электрическим стимулом, величина ко­ торого меньше КМП, происходит градуальная деполяризация мембраны под катодом {катэлектротон) и гиперполяризация гюд анодом (анэлектротон). Изменения возбудимости мембра­ ны под действием подпорогового электрического тока назы­ ваются электротоническими явлениями.

При замыкании электрической цепи сила сокращения мышц под катодом {катодзамыкательное сокращение, КЗС) больше, чем под анодом (анодзамыкательное сокращение, АЗС). При размыкании цепи наблюдают обратные соотношения: сила анодразмыкательного сокращения мышцы (АРС) больше катод- размыкательного (КРС). Такой феномен связан с тем, что при выключении гиперполяризующего тока мембранный потенциал падает до исходного уровня при смещенном к нему КУД (см- рис. 8Б), в результате чего наступает возбуждение мышечного волокна. Таким образом, полярнызй закон Пфлюгера для со­ кращения мышц может быть выражен следующим неравенством

[2.2] Следует отметить, что с увеличением амплитуды элек­ трического стимула возбуждается все большее число мышечных волокон, пока не наступит сокращение всех волокон данной

мышцы (лестница Боудича).
Аккомодационные свойства возбудимых мембран лежат в

основе закона возбуждения Э.Дюбуа-Реймона, согласно кото­ рому реакции возбудимых тканей определяются, не только си­ лой действующего тока, но и скоростью его изменения (крутизной переднего фронта импульса). Следовательно, поро­ говая сила деполяризующего тока (но не КУД) зависит как от амплитуды, так и от продолжительности электрического импуль­ са. Этот закон графически изображается кривой "сила- длительность" (кривая которая является совокупностью точек, образованных правыми верхними углами пороговых элек­ трических импульсов, вызывающих минимальное возбуждение (рис. 17). Она может быть адекватно описана уравнением:

84