Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia_rasteny_kratkie_otvety.doc
Скачиваний:
227
Добавлен:
29.02.2016
Размер:
5.82 Mб
Скачать
  1. Фотосинтетическая единица. Реакционные центры. Пигмент-антенный комплекс (пак), превращение энергии в пак.

Фотосинтетическая единица - объединение молекул хлорофилла, которые поглощают кванты света, с ферментативным центром, где происходит превращение энергии электронного возбуждения в ее химическую форму во время фотосинтеза. Находится в хлорофиллсодержащих фотосинтетических мембранах — тилакоидах. Фотосинтетическая единица содержит 25 - 50 молекул хлорофилла у бактерий и 250 - 400 у высших растений, вспомогательные пигменты, один реакционный центр, одну электронтранспортную цепь с системой, обеспечивающей образование АТФ. Все это вмонтировано в белково-липоидную структуру. Реакционный центр представляет собой длинноволновую форму бактериохлоро-филла а у бактерий и хлорофилла а у высших растений. Он находится в особом окружении и состоянии. Антенный комплекс вместе с одним из фотоактивных комплексов (ФС I или ФС II) образует фотосинтетическую единицу. Однако до сих пор неясно, какая реальная организация фотосинтетических мембран соответствует фотосинтетической единице.

  1. Взаимопревращение мембран растительной клетки и их функции.

В соответствии с представлениями о динамичности мембран можно допустить, что все мембраны, за исключением мембран митохондрий и пластид, могут взаимопревращаться. Так, например, мембраны эндоплазматической сети могли бы давать начало плазмалемме и мембранам диктиосом, а последние в свою очередь – мембранам вакуолей, лизосом и плазмалемме. С наружной плазматической мембраной генетически связана внутриклеточная система мембран, открытая в 1945 г. Паладом и названная Портером эндоплазматическим ретикулумом или эндоплазматической сетью (ЭС). ЭС образована элементарной мембраной и может выполнять разнообразные функции. Гранулярной ЭР осуществляет синтез, накопление и транспорт белков, а также участвует в процессах секреции белков (например, при росте клеточных стенок). Огранулярный ЭР осуществляет синтез углеводов, липидов, терпиноидов и других веществ, участвует в процессах детоксикации вредных для клетки соединений гидрофобной природы. Вместе с митохондриями ЭР является важным компонентом окислительно-восстановительных систем клетки. ЭР может служить системой передачи раздражения внутри клетки, а также способствует объединению процессов обмена веществ в клетке в единое целое. В то время как ЭС образована элементарной мембраной, ядро окружено двойной мембраной, которую часто называют ядерной оболочкой. Одно из отличий этой мембраны (см. предыдущий раздел) состоит в том, что она пронизана множеством пор, которые связаны с другими структурами и поэтому не представляют просто отверстия в оболочке ядра. Интересно, что расположение пор меняется на протяжении жизни клетки. В фазе роста они распределены беспорядочно по всей поверхности ядра, в отдельные фазы клеточного цикла собираются в определенных местах, а во время деления – вовсе исчезают.

  1. Адаптации растений к засолению и недостатку кислорода.

В зависимости от типа анионов выделяют хлоридный, сульфатный, хлоридно-сульфатный и карбонатный типы засоления почв. Растения, приспособленные к существованию в условиях избыточного засоления, называют галофитами). Галофиты (в отличие от гликофитов – растений незасоленных почв и водоемов) способны противостоять засолению. Высокие концентрации ионов Na+ могут не только повреждать рас-тения, но и нарушать структуру почвы. При засолении у гликофитов в первую очередь подавляются ростовые процессы и фотосинтез. К весьма чувствительным к засолению сельскохозяйственным видам растений от-носятся кукуруза, фасоль, бобы, салат, цитрусовые. Эти растения повре-ждаются при незначительном превышении (от нормы) содержания солей в среде выращивания (например, при концентрации хлорида натрия в питательном растворе 50 мМ наблюдается почти 50 %-ное угнетение скорости ростовых процессов). Однако ряд растений-гликофитов обладает повышенной устойчивостью к избытку солей. К относительно солеустойчивым относятся, например, сахарная свекла, хлопчатник, ячмень, томаты. Ни один из видов растений не способен жить в отсутствии кислоро-да, но некоторые виды способны переносить более или менее длитель-ный период как недостатка, так и полного отсутствия кислорода.

Корневая система растений обычно получает кислород прямо из почвы. В хорошо дренированных почвах О2 способен диффундировать на глубину до нескольких метров. Поэтому содержание кислорода в га-зовой фазе почвы практически такое же, как во влажном воздухе. Однако при затоплении и заболачивании корни испытывают недостаток кислорода, тем более, что скорость его диффузии в водной среде невелика. При этом кислород также необходим для дыхания различных других почвенных организмов. Анаэробные условия резко угнетают рост и развитие многих видов растений. Однако некоторые из них (например, рис, ива) очень устойчивы к дефициту кислорода. Различают условия гипоксии, т. е. частичного дефицита кислорода, и аноксии – полного отсутствия О2 в среде. Большинство растительных клеток и тканей не могут выживать в условиях длительного анаэробиоза. В отсутствие О2 перестает функционировать цикл Кребса и окислительное фосфорилирование. Единственным способом получения АТФ в условиях аноксии является гликолиз. В анаэробных условиях для активного функционирования гликолиза наиболее важен процесс окисления НАДН, который происходит в ходе брожения. При молочнокислом брожении в тканях накапливается молочная кислота (лактат), вызывающая повышение кислотности цитоплазмы (ацидоз). При снижении рН процесс брожения переключается на образование этилового спирта (в кислой среде подавляется активность лактатдегидрогеназы, но возрастает активность лактатдекарбоксилазы). У неповрежденных клеток кислотность вакуолярного содержимого (рН 5,8) гораздо выше, чем цитоплазмы (рН 7,4). При анаэробиозе протоны выходят из вакуоли в цитоплазму и повышают ее кислотность. Именно ацидоз является начальным этапом необратимых нарушений клеточного метаболизма и гибели клетки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]