Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia_rasteny_kratkie_otvety.doc
Скачиваний:
227
Добавлен:
29.02.2016
Размер:
5.82 Mб
Скачать
  1. Азот и его роль в процессе жизнедеятельности растений.

Азот - один из основных элементов, необходимых для растений. Он входит в состав всех белков (содержание его колеблется от 15 до 19%) нуклеиновых кислот, аминокислот, хлорофилла, ферментов, многих витаминов, липоидов и других органических соединений, образующихся в растениях. Общее содержание азота в растении составляет 0,2 - 5 % и более массы воздушно - сухого вещества. В свободном состоянии азот является инертным газом, которого в атмосфере содержится 75,5 % ее массы. Однако в элементарной форме азот не может усваиваться растениями, за исключением бобовых, которые используют азотные соединения, вырабатываемые развивающимися на их корнях клубеньковыми бактериями, способными усваивать атмосферный азот и переводить его в доступную для высших растений форму. Азот поглощается растениями только после соединения его с другими химическими элементами в форме аммония и нитратов - наиболее доступных форм азота в почве. Аммоний, являясь восстановленной формой азота, при поглощении растениями легко используется в синтезе аминокислот и белков. Синтез аминокислот и белков из восстановленных форм азота происходит быстрее и с меньшими затратами энергии, чем синтез из нитратов, для восстановления которых до аммиака растению необходимы затраты дополнительной энергии. Однако нитратная форма азота более безопасна для растений, чем аммиачная, так как высокие концентрации аммиака в тканях растений вызывают их отравление и гибель. Аммиак накапливается в растении при нехватке углеводов, которые необходимы для синтеза аминокислот и белков. Дефицит углеводов в растениях наблюдается обычно в начальный период вегетации, когда ассимиляционная поверхность листьев не развилась еще настолько, чтобы удовлетворить потребность растений в углеводах. Поэтому аммиачный азот может быть токсичен для культур, семена которых бедны углеводами (сахарная свекла и др.). По мере развития ассимиляционной поверхности и синтеза углеводов эффективность аммиачного питания возрастает, и растения усваивают лучше аммиак, чем нитраты. В начальный период роста эти культуры должны обеспечиваться азотом в нитратной форме, а такие культуры, как картофель, клубни которого богаты углеводами, могут использовать азот в аммиачной форме. При недостатке азота замедляется рост растений, ослабляется интенсивность кущения злаковых и цветения плодовых и ягодных культур, сокращается вегетационный период, уменьшается содержание белка и снижается урожай.

  1. Этилен, биосинтез, структура и роль в процессе роста растений.

Газ этилен (С2Н4) справедливо относят к гормонам растений, так как он синтезируется в растениях и в крайне низких концентрациях регулирует их рост, активирует созревание плодов, вызывает старение листьев и цветков, опадение листьев и плодов, участвует в ответе растений на различные стрессовые факторы и в регуляции многих других важных событий в жизни растения. Этилен, точнее, этиленпродуценты - соединения, разрушение которых сопровождается выделением этилена, имеют широкое применение в практике сельского хозяйства. Все это определяет большое внимание биохимиков, физиологов, генетиков, молекулярных биологов и практиков к изучению этилена. В ответах растений на различные повреждающие воздействия - механические, химические и биологические - также участвует этилен. Он вовлекается в ответ растений на атаку патогенов. Этилен включает системы защиты растений от патогенов. При этом он индуцирует синтез большого числа ферментов, например ферментов, разрушающих клеточную стенку грибов (хитиназы, специфические глюканазы), а также ферментов, участвующих в синтезе фитоалексинов - соединений, ядовитых для патогена. Биосинтез: ключевым соединением для биосинтеза этилена в растениях является аминокислота метионин. При взаимодействии метионина с макроэргическим соединением АТФ возникает промежуточный продукт S-аденозилметионин, который далее превращается в 1-аминоциклопропан-1-карбоновую кислоту (АЦК) - непосредственный предшественник этилена в растениях. Затем АЦК в присутствии кислорода разлагается с образованием этилена, аммиака, муравьиной кислоты и СО2. Каждый этап катализируется определенным ферментом. Ключевым ферментом, на уровне которого регулируется биосинтез этилена, является АЦК-синтаза. АЦК-синтаза не синтезируется в клетках постоянно, а индуцируется индукторами - веществами, вызывающими ее синтез. Такие ферменты принято называть индуцибельными. Синтез АЦК-синтазы индуцируют высокие концентрации ауксина, молекулы - химические сигналы грибной инфекции, а также сам этилен. Синтез АЦК-синтазы идет до тех пор, пока присутствует индуктор. Затем синтез прекращается, а образованные молекулы фермента быстро разрушаются, так как период их полураспада составляет 20-30 мин. Это подчеркивает, как жестко растение контролирует синтез этилена на уровне образования и разрушения ключевого фермента биосинтеза АЦК-синтазы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]