Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по начертательной геометрии.doc
Скачиваний:
190
Добавлен:
12.11.2018
Размер:
4.81 Mб
Скачать

4.6. Метод вращения вокруг следов плоскости (совмещение)

 

При изображении объекта в плоскости, заданной следами, иногда целесообразно использовать метод совмещения этой плоскости с одной из плоскостей проекции.

Этот метод также является частным случаем метода вращения. Осью вращения при этом является один из следов плоскости, а второй её след совмещается с той же плоскостью проекций (рис. 4.12).

 

Рис. 4.12

 

Совмещенное положение следа плоскости получают при вращении произвольной точки этого следа в плоскости, перпендикулярной другому следу плоскости.

 

Глава 5 Многогранники

 

 

 

5.1. Задание многогранников на эпюре Монжа (общие положения)

 

Многие пространственные фигуры представлены в виде многогранников – замкнутых пространственных фигур, ограниченных плоскими многоугольниками. Вершины и стороны многоугольников являются вершинами и ребрами многогранника, при этом, если все его вершины и ребра находятся по одну сторону плоскости любой из его граней, то многогранник называется выпуклым, а все его грани являются выпуклыми многоугольниками.

Многогранники широко распространены в архитектуре, строительстве, технике. Многие детали машин и механизмов, станков, инструментов и приборов имеют форму многогранников или их сочетаний.

 

 

5.2. Виды многогранников

 

Наибольший практический интерес представляют призмы, пирамиды и выпуклые однородные многогранники – тела Платона (тетраэдр, гексаэдр, октаэдр, додекаэдр и икосаэдр). Это правильные (соответственно) четырех-, шести-, восьми-, двенадцати- и двадцатигранники.

Пирамида – это многогранник, одна грань которого – многоугольник, а остальные грани – треугольники с общей вершиной (рис. 5.1). Пирамида называется правильной, если основанием её является правильной многоугольник, а высота (перпендикуляр, опущенный из вершины на основание) проходит через центр этого многоугольника.

 

Рис. 5.1

 

Пирамида называется усечённой, если вершина её отсекается плоскостью, пересекающей все ребра, исходящие из этой вершины (рис. 5.1, 5.2).

 

 

Рис. 5.2

 

Призмой называют многогранник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани – параллелограммы (рис. 5.3).

 

Рис. 5.3

 

Призму называют прямой, если ребра её перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, а боковые рёбра перпендикулярны основанию, то её называют параллелепипедом (рис. 5.4)

 

Рис. 5.4

 

Многогранник, все грани которого представляют собой правильные и равные многоугольники, называют правильными (это – тела Платона).

Русский математик Леонард Эйлер открыл и доказал знаменитую теорему, связывающую число граней (Г), вершин (В) и рёбер (Р) любого выпуклого многогранника:

Г + В – Р = 2 (число Эйлера)

Построение проекций многогранника сводиться к построению проекций вершин и рёбер, т.е. сетки многогранника.

 

 

 

5.3. Пересечение многогранника плоскостью

 

Цель пересечения многогранников – выяснить их конструктивные особенности, которые невозможно определить на обычных проекциях.

При пересечении многогранника плоскостью в сечении получается плоская фигура, ограниченная линиями пересечения секущей плоскости с гранями многогранника, т.е. с плоскостями.

Линия пересечения многогранника плоскостью определяется по точкам пересечения рёбер многогранника (метод рёбер) или по линиям пересечения граней многогранника с данной плоскостью (метод граней), т.е. задача сводиться к определению точек пересечения прямой с плоскостью (в первом случае) или к определению линий пересечения плоскостей.

Фигуру, полученную от пересечения многогранника плоскостью называют многоугольником (фигурой) сечения, иногда упрощенно, сечением (рис. 5.2 DЕF)

Если секущая плоскость параллельна плоскости проекций, то фигура сечения проецируется на эту плоскость проекций без искажения – в натуральную величину (рис. 5.1 123). В противном случае сечение проецируется с искажением, в частности и прямой (рис. 5.2). Поэтому для определения натуральной величины сечения необходимо применить один из методов преобразования проекций (замены плоскостей проекций, вращения или совмещения).