Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика зима шпоры.docx
Скачиваний:
11
Добавлен:
25.12.2018
Размер:
282.87 Кб
Скачать

44. Дать понятие предела последовательности. Изложить критерий Коши и Сформулировать теоремы о свойствах предела последовательности.

Конечное число а называется пределом числовой последовательности x1; x2; ... ; хn; ... (или просто {хn}), если для любого > 0 (сколь угодно малого) существует число N = N() такое, что |хn - а| N. Обозначение: = а. Определение 2. Числовая последовательность имеет бесконечный предел, если для любого > 0 (сколь угодно большого) существует число N = N() такое, что | хn при всех n > N.

Обозначение: = м

Критерий Коши:

Число а называется пределом числовой последовательности {Xn} при n стремящемся к бесконечности, если для любого сколь угодно малого положительного числа эпсилон найдётся такое натуральное число N, зависящее от эпсилон, что для всех n≥N выполняется неравенство │Xn-а│<E.

Теоремы о пределах последовательностей:

1) Если последовательности {xn} и {yn} сходятся и выполняются равенства , , то сходятся также их сумма, разность, произведение и частное.

И верны формулы:

Следствие: постоянный множитель можно выносить за знак предела.

2) Если между членами трёх последовательностей {Xn} {Yx} {Zn} выполняется неравентсво Xn≤Zn≤Yn и пределы существуют и равны между собой, то существует и предел последовательности Zn, который равен их общему пределу.

45. Дать понятие бесконечно больших и бесконечно малых последовательностей, изложить их свойства.

Бесконечно малые и бесконечно большие последовательности:

Последовательность называется бесконечно малой, если её предел равен нулю.

Свойства бесконечно малых последовательностей:

1) сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

2) произведение ограниченной последовательности на бесконечно малую, есть бесконечно малая последовательность.

Следствие: произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

3) для того, чтобы выполнялось равенство необходимо и достаточно, чтобы последовательность можно было представить в виде суммы постоянной величины и бесконечно малой последовательности.

Последовательность называется бесконечно большой, если для любого числа М>0 найдется такое натуральное число N, что для всех n начиная с этого номера выполняется условие │Xn│>М.

Свойства бесконечно больших последовательностей:

1) Если {αn}бесконечно малая последовательность, то {} бесконечно большая последовательность. Если {αn}бесконечно большая последовательность, то {} бесконечно малая последовательность.

2) Если предел последовательности βn=∞ и все члены этой последовательности, начиная с некоторого номера, положительны, то последовательность стремится к положительной бесконечности. А если члены отрицательны, то последовательность стремится к отрицательной бесконечности.

46. Дать понятие предела функции в точке. Изложить критерий Гейне и критерий Коши. Сформулировать теоремы о свойствах пределов функций.

Предел в точке -число b назв. пределом функции f в точке x=a, если для любой послед {Xk}, сходящейся к а, соответствующая последовательность значений функции {F(k)} сходится к b.

Критерий Гейне: число А называется пределом функции в точке х0, если для любой последовательности значений аргументов {xn} сходящейся к х0, соответствующая последовательность значений функций сходится к А.

Критерий Коши: число А называется пределом функции при х стремящемся к х0, если для любого эпсилон больше нуля можно указать такое положительное δ(дельта), зависящее от эпсилон, что для любого х удовлетворяющего неравенству 0<│х- х0│<δ выполняется неравенство │f(x)-А│<Е.

Теоремы о пределах:

Если существуют , , то существует также предел их суммы, разности, произведения и частного.

Следствия:

1) постоянный множитель можно выносить за знак предела

2) предел многочлена в точке равен значению многочлена в этой точке.

3) предел дробно-рациональной функции также равен значению функции в этой точке при условии, что точка принадлежит области определения функции.

Если при вычислении предела и числитель и знаменатель имеют предел равный нулю, то нужно разделить их на двучлен х- х0 и вычислить предел, при необходимости повторить.