Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11 билет.docx
Скачиваний:
2
Добавлен:
20.04.2019
Размер:
597.6 Кб
Скачать

1.4 Геометрический смысл производной

Геометрическая интерпретация производной, впервые данная в конце XVII в. Лейбницем, состоит в следующем: значение производной функции в точке xравно угловому коэффициенту касательной, проведённой к графику функции в той же точке x, т.е.

Уравнение касательной, как всякой прямой, проходящей через данную точку в данном направлении, имеет вид - текущие координаты. Но и уравнение касательной запишется так: . Уравнение нормали запишется в виде .

1.5 Механический смысл производной

Механическое истолкование производной было впервые дано И. Ньютоном. Оно заключается в следующем: скорость движения материальной точки в данный момент времени равна производной пути по времени, т.е. Таким образом, если закон движения материальной точки задан уравнением , то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени нужно найти производную и подставить в неё соответствующее значение t.

Правила дифференцирования

Производная суммы (разности) функций

Производная алгебраической суммы функций выражается следующей теоремой.

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,

Производная произведения функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и

Производная произведения двух функций не равана произведению производных этих функций.

Производная частного функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0, то производная частного этих функций вычисляется по формуле

  Производная сложной функции

"Двухслойная" сложная функция записывается в виде

где u = g(x) - внутренняя функция, являющаяся, в свою очередь, аргументом для внешней функции f.  Если f и g - дифференцируемые функции, то сложная функция   также дифференцируема по x и ее производная равна

Данная формула показывает, что производная сложной функции равна произведению производной внешней функции на производную от внутренней функции. Важно, однако, что производная внутренней функции вычисляется в точке x, а производная внешней функции - в точке u = g(x)!  Эта формула легко обобщается на случай, когда сложная функция состоит из нескольких "слоев", вложенных иерархически друг в друга. 

Производная обратной функции.

Пусть функция  дифференцируема и строго монотонна на  . Пусть также в точке  производная  . Тогда в точке    определена дифференцируемая функция  , которую называют обратной к   , а ее производная вычисляется по формуле  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]