Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Естественная энергетика.doc
Скачиваний:
98
Добавлен:
21.04.2019
Размер:
3.65 Mб
Скачать

5. Физический механизм создания звуковых и ударных волн

Традиционная физика никак не объясняет возникновение звуковых волн и их разгон от малой скорости движения источника звука до полной скорости звука, которая несоизмерима с первой, так как превышает ее на 2…3 порядка. Первым этот механизм попытался объяснить Д.Х. Базиев /10/. Ниже дано авторское представление об указанном механизме с учетом анализа /10/.

При взаимодействии ударных осцилляторов источника колебаний с осцилляторами среды происходит деформация их глобул. Из сферических (при равномерном со всех сторон взаимодействии с соседями) они становятся выпукло-вогнутыми телами вращения, похожими, например, на каплю жидкости деформированную гравитацией. Такая глобула (среда) имеет вогнутую поверхность (лунку) со стороны силового воздействия соседней молекулы – осциллятора и – выпуклую поверхность – с другой. За счет большей скорости, полученной из-за искусственного насильственного сокращения критического расстояния, молекула – мишень, например газа, в глобуле развивает давление больше, чем в невозмущенном состоянии. Размер глобул уменьшается при сжатии их ударными молекулами – снарядами, что приводит к уплотнению среды в ударной звуковой волне.

На фронте волны деформированные глобулы молекул среды образуют совокупность (цепочки) как бы вставленных друг в друга тел, выпуклости которых входят в вогнутости впереди стоящих (по ходу волны).

Скорость молекул в глобулах начинает увеличиваться сначала в первом ряду, граничащем со стенкой источника колебаний, молекулы – снаряды которой взаимодействуют с молекулами – мишенями этого, первого, ряда. Затем таким же образом молекулы первого ряда, становясь снарядами, действуют на молекулы – мишени второго ряда и т.д. Возникает ударная звуковая волна, которая движется в сторону, определенную действием источника звука – малых возмущений.

Важно, что молекулы в своих глобулах только передают это возмущение в среде, но сами глобулы остаются как бы неподвижными. Задние активированные молекулы подталкивают (электродинамически) передние неактивированные и далее по цепочке вперед. Отдав свою энергию, задние молекулы остаются в среде в своей глобуле, которая не бежит за волной, а остается в неподвижной части газа.

На фронте волны давление повышенное, за волной – разрежение обусловленное взаимодействием компактного уплотнения деформированных глобул молекул на фронте волны с молекулами неподвижной части среды позади волны, которые не успевают возвратиться мгновенно. Это приводит в ряде случаев к разрыву сплошности среды. В эту зону пониженного давления подтягиваются глобулы с молекулами из неподвижной части окружающей среды, включая дезактивированные, в то время как само возмущение (волна) уходит вперед. Волна уходит в заданном источником звука направлении, а глобулы практически остаются на месте. В то же время молекулы в них движутся с повышенной скоростью и взаимодействуют с соседями с большими силами и ускорениями, практически в вакууме.

Отсутствие сопротивления способствует прохождению волны на большие расстояния. Расширение фронта волны способствует ее затуханию.

Итак, звуковая волна как возмущение (изменение давления, температуры и плотности среды) идет в заданном источником звука направлении за счет ударного действия задних активированных молекул по передним. Причем глобулы, внутри которых движутся и те и другие молекулы, остаются на своих местах, но испытывают деформации.

Значение разрежения за звуковой волной зависит от первоначального значения давления невозмущенной среды. В зоне разрежения звуковой волны разрыв сплошности среды (жидкости) идет с образованием полости – каверны. Кавитация при этом имеет локальный характер, как правило, в пучностях стоячих, например, ультразвуковых волн, и, как видно, ограничена первоначальным давлением. Видимо, поэтому в ультразвуковых установках жидкость при кавитации не нагревается: слабы условия для разрушения молекул на атомы и свободные электроны. А к условиям относятся: разрежение, частота и амплитуда колебаний. В звуковой волне они не позволяют образовываться крупным кавитационным пузырькам, схлопывание которых приводило бы к высоким давлениям, температурам, разрушению молекул. А если нет разрушения, то нет и ФПВР как процесса энерговыделения. Кстати и смешивания, например, топлива и воды без их последующего расслоения в ультразвуковых ваннах тоже не происходит. Ультразвук никогда не даст ожидаемого эффекта нагревания и смешивания.

В то же время смешивание без расслоения происходит в устройствах с большой амплитудой и принудительным понижением давления всего объема среды. Энерговыделение происходит тоже при резком перепаде давления с большего на меньшее. Это вызвано тем, что активированные на фронте волны молекулы, попадая в зону разрежения лопаются под действием разности большого давления внутри них и малого давления вне их. Кроме того, этот перепад давления вызывает звуковую и ударную волны.

Таким требованиям отвечает цилиндр двс. В нем поршень производит снижение давления среды, звуковые волны, дающие возможность наряду с другими воздействиями (электрический разряд, температура, катализ...) разрушить молекулы кислорода и азота на атомы, фрагменты и свободные электроны, необходимые для возникновения процесса ФПВР как энерговыделения.

Именно поэтому, наверно, двигатели внутреннего сгорания первыми вышли на автотермический бестопливный режим работы.