Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Естественная энергетика.doc
Скачиваний:
98
Добавлен:
21.04.2019
Размер:
3.65 Mб
Скачать

5.1. Алгоритм и пример расчета параметров звуковой волны

Исходные данные /10/:

R=510-3 м – радиус цилиндрического стержня генератора звука;

=6,5103 с-1 – частота колебаний стержня;

А=8,6410-5 м – амплитуда колебаний стержня;

Р0=1,03105 Па – давление воздуха;

Т0=273 К (00С) – температура воздуха;

с0=331,8 м/с – измеренная в опыте скорость звука;

mв=4,8110-26 кг – масса среднего осциллятора воздуха;

в=1,293 кг/м3 – плотность воздуха;

v0=4,71104 м/с – линейная скорость осциллятора воздуха;

h=6,6310-34 – постоянная Планка;

ħ=4,1110-34 – постоянная Герца ħ=h/а;

– коэффициент сферичности глобулы;

kв=1,3810-23 Дж/К – постоянная Больцмана (для воздуха);

u0=1,03 м/с – скорость блуждания глобулы воздуха;

f0=5,81011 с-1 – частота колебаний осцилляторов воздуха.

Последовательность вычислений:

1. Полный путь кромки стержня за один цикл колебания

L=2А=28,6410-5=17,2810-5 м

2. Скорость (средняя) кромки стержня

v=L=17,2810-56,5103=1,12 м/с

3. Площадь торцевой поверхности стержня

S=R2=(510-3)2=7,8510-5 м2

4. Время набора скорости от нулевой до максимальной (среднее время прохождения пути А/2 со средней скоростью)

5. Объем одной глобулы

Vг=mв/в=3,7210-26 м3

6. Диаметр глобулы, занимаемой осциллятором воздуха

dг=(6Vг/)1/3=4,1410-9 м

7. Объем деформированного стержнем воздуха на участке разгона А/2

V1=S  А/2=3,3910-9 м3

8. Число слоев глобул, смещенных стержнем

9. Число смещенных глобул

nг=V1/Vг=9,121016

10. Суммарное число глобул после смещения в объеме V1 воздуха над стержнем (в уплотненном слое)

nV1=2nг

11. Объем одной глобулы в уплотненном слое

Vг1=Vг/2=1,8610-26 м3

12. Диаметр глобулы в уплотнении

dг1=(6Vг1/)1/3=3,2910-9 м

13. Амплитуда колебания осциллятора в уплотненной глобуле

А1dг1=3,2910-9 м

14. Линейная скорость всех осцилляторов в уплотнении

v1=v0+c0=4,71104+331,8=4,74104 м/с

15. Частота колебания осцилляторов в уплотнении

f1= v1/2А1=1,441013 с-1

16. Температура газа в уплотнении

Т1=f1=4,710-101,441013=6750 К

17. Энергия осциллятора в уплотнении (средняя)

ε1=kвТ1=hf1=6,6310-341,441013=9,5410-21 Дж

18. Давление газа в уплотнении (среднее)

19. Плотность воздуха в уплотнении (средняя)

ρ1=2ρв=2,59 кг/м3

20. Скорость звука (звуковой волны)

Здесь:

σ0 – отношение скоростного напора звуковой волны к давлению невозмущенного газа или – отношение энергии осциллятора в звуковой волне к энергии осциллятора в невозмущенном газе: σ0 – энергетический коэффициент (фоновой системы).

5.2. Алгоритм разгона звуковой волны

1. Расстояние критического (нормального) сближения осциллятора газа (воздуха) с соседями, в том числе, и со стенкой (торцем стержня – генератора звука):

2. В каждом акте взаимодействия осциллятора газа с атомом стенки участвуют два электрино – посредника. При излучении первого электрино осциллятор останавливается на расстоянии r0 от стенки в течение времени Δτ ожидания излучения второго электрино (из атома стенки).

3. Если в нормальном акте взаимодействия двух осцилляторов оба замирают неподвижно в течение времени Δτ, то в случае с подвижной стенкой она надвигается на неподвижный осциллятор газа, приближаясь к нему на расстояние Δr=Δτv.

4. Теперь расстояние между двумя взаимодействующими осцилляторами уменьшилось на Δr и стало r1=r0-Δr (меньше критического).

5. За этим последовало излучение второго электрино (из атома – осциллятора стенки) и возобновление движения осциллятора газа уже с возросшей по сравнению с v0 скоростью (за счет уменьшения расстояния между осцилляторами и возрастания силы взаимодействия зарядов осцилляторов) обратно пропорционально квадрату расстояния между ними.

6. Это и есть начало избыточной скорости Δu осциллятора газа сначала – в пристенном слое:

7. Поскольку гонимые стержнем осцилляторы газа отдают половину своей скорости за период τ одного движения стержня осцилляторам неподвижной части газа так, что и гонимые и бывшие в неподвижной части газа, то есть все осцилляторы в конце движения стержня, в объеме уплотнения, имеют одинаковую скорость v1=v00, то гонимые осцилляторы должны иметь полное приращение скорости , откуда

8. Теперь можно определить численные значения параметров осцилляторов в пристенном слое газа:

=v0+Δu=4,71104+2,9710-5=4,71317250297104 м/с

Δr=r0-r1=1,110-16 м

9. Уравнение, описывающее формирование скорости звука в воздушной среде

Здесь: ψв – частотная постоянная воздуха.

10. Формула п.9 расчета звуковой и ударной волны справедлива для любых газов и условий при подстановке соответствующих значений аргументов, в том числе:

Здесь:

R; Rc – радиусы осциллятора газа, соответственно, геометрический и вращения (с постоянной скоростью vс);

vс=7,7369622 м/с – постоянная линейная скорость на радиусе вращения;

Аi – атомная масса i-ого газа;

nе=3 – число электронов в единичном элементарном атоме (нейтроне, нуклоне).

В /10/ даны также представления и расчеты по распространению звука в жидкостях и твердых телах. Однако, при этом всегда существуют звуковые волны электринного газа (эфирные звуковые волны), присутствующего везде, скорость которых существенно выше указанных звуковых, и этот фактор не учитывается. Возможно, есть еще гравитационные волны, но это также не учитывается в настоящее время в связи с отсутствием необходимой информации об этих факторах. Тем не менее значение эфирных волн очень важно, так как эти волны, опережающие скорость звука среды, разрушают ее структуру: агрегаты – до молекул, молекулы – до атомов, атомы – до фрагментов и элементарных частиц. Соответственно, и волны бывают звуковые, ударные, дефлаграционные, детонационные.

Как видно, причиной разгона молекул в их глобулах (и звуковой волны в целом) является искусственное механическое сближение осцилляторов источника колебаний с осцилляторами среды на расстояния меньше критических, при которых происходит электродинамическое взаимодействие. Сила взаимодействия зарядов обратно пропорциональна квадрату расстояния между ними. Соответственно, скорость и ускорение осцилляторов среды зависят от этой силы и от скоростей взаимодействующих молекул среды и стенки в своих глобулах, но не от скорости источника (его стенки), которые (скорости источника и молекул) несоизмеримы между собой, так как отличаются друг от друга на несколько порядков. Например, скорость источника звука равна 1 м/с, а скорость молекул воздуха в глобулах – 47000 м/с.

Разгон звуковой волны от скорости движения источника звука, например, стержня, в 1 м/с до полной скорости звука в газе 300…400 м/с, в жидкости 1400…1600 м/с; в стали 5100…5700 м/с осуществляется за счет энергии быстрых молекул и атомов вещества, движущихся в своих глобулах со скоростями в десятки тысяч метров в секунду. Эта энергия подпитывается природой.