Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бернацкий.doc
Скачиваний:
9
Добавлен:
03.05.2019
Размер:
4.53 Mб
Скачать

3.5. Метод скорейшего спуска для случая линейной системы

Рассмотрим систему линейных уравнений:

с действительной матрицей и столбцом свободных членов . Тогда и . И исходная система имеет вид: , где – невязка вектора и .

Соответственно, окончательно имеем:

.

Пример. Методом скорейшего случая решить систему уравнений:

Решение. В качестве начального приближения выберем .

Тогда ,

,

.

Вычисляя коэффициент , получим: .

Отсюда , причем невязка . Аналогично вычисляя, получим: ;

;

;

.

Процесс скорейшего случая для линейных систем сходится медленно. Так, здесь точное решение: ; ; ; .

4. Приближение функций

4. 1. Метод наименьших квадратов

В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами , где – общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности.

Рис. 12

При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы «сгладить» экспериментальные погрешности, вычислить значения функции в точках, не содержащихся в исходной таблице.

Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость , при которой обращается в минимум. Погрешность приближения оценивается величиной . В качестве функциональной зависимости рассмотрим многочлен . Формула минимизируемой функции примет вид . Условия минимума можно записать, приравнивая нулю частные производные по всем переменным, .

Получим систему уравнений

или , .

Эту систему уравнений перепишем в следующем виде:

, .

Введем обозначения: . Последняя система может быть записана так: , .

Её можно переписать в развернутом виде:

.

Матричная запись системы имеет следующий вид: . Для определения коэффициентов , и, следовательно, искомого многочлена, необходимо вычислить суммы и решить последнюю систему уравнений. Матрица этой системы является симметричной и положительно определенной.

Погрешность приближения в соответствии с исходной формулой составит

. Рассмотрим частные случаи и .

Линейная аппроксимация .

.

;

, .

Отсюда система для нахождения коэффициентов имеет вид:

.

Её можно решить методом Крамера.

Квадратичная аппроксимация .

.

.

.

, .

Или в развёрнутом виде

Решение системы уравнений находится по правилу Крамера.

Пример. Построим по методу наименьших квадратов многочлены первой и второй степени и оценим степень приближения. Значения в точках , приведены в следующей таблице.

1

2

3

4

5

1

2

3

4

5

-1

1

2

4

6

Вычислим коэффициенты по формулам для линейной и квадратичной аппроксимация ; .

Для линейной аппроксимации система уравнений определения коэффициентов и многочлена первой степени имеет вид:

.

Решая эту систему, получим:

.

.

Для квадратичной аппроксимации система уравнений определения коэффициентов и многочлена второй степени имеет вид:

.

И коэффициенты равны:

. Тогда

.

Сравним значения, рассчитанные для функциональной зависимости, с исходными данными. Результаты приведены в табл. 3.

Таблица 3

0

1

2

3

4

1

2

3

4

5

-1

1

2

4

6

-1

0,7

2,4

4,1

5,8

-1

0,62

2,24

4

6,9

Погрешность приближения в соответствии с исходными формулами составит:

.

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]