Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бернацкий.doc
Скачиваний:
10
Добавлен:
03.05.2019
Размер:
4.53 Mб
Скачать

7.4. Метод Рунге – Кутта

Метод Рунге – Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге – Кутта.

Рассмотрим задачу Коши для дифференциального уравнения с начальным условием .

Как и в методе Эйлера, выберем шаг и построим сетку с системой узлов .

Обозначим через приближенное значение искомого решения в точке .

Приведем расчетные формулы метода Рунге – Кутта четвертого порядка точности:

, ,

, ,

, .

Оценка погрешности. Оценка погрешности метода Рунге – Кутта затруднительна. Грубую оценку погрешности дает правило Рунге. Так как метод Рунге – Кутта имеет четвертый порядок точности, т. е. , то оценка погрешности примет вид: .

Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши методом Рунге – Кутта четвертого порядка точности с заданной точностью . Нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение . Вычисления прекращаются тогда, когда будет выполнено условие: .

Приближенным решением будут значения .

Пример 4. Методом Рунге-Кутта четвертого порядка точности найдем решение на отрезке следующей задачи Коши .

Возьмем шаг . Тогда .

Расчетные формулы имеют вид:

, , ,

, , .

Задача имеет точное решение: , поэтому погрешность определяется как абсолютная величина разности между точными и приближенными значениями .

Найденные приближенные значения решения и их погрешности представлены в таблице 9.

Таблица 9

0

1

0,6

1,43333

0,1

1,01005

10-9

0,7

1,63232

0,2

1,04081

0,8

1,89648

0,3

1,09417

0,9

2,2479

0,4

1,17351

1

2,71827

0,5

1,28403

    1. Решение краевой задачи для линейного дифференциального уравнения второго порядка методом прогонки

Пусть на отрезке требуется найти решение дифференциального уравнения:

, (1)

удовлетворяющее следующим краевым условиям:

;

(2)

;

Численное решение задачи состоит в нахождении приближенных значений искомого решения в точках . Для этого разобьем отрезок на равных частей с шагом . Полагая и вводя обозначения , , для внутренних точек отрезка , вместо дифференциального уравнения (1)–(2) получаем систему конечноразностных уравнений:

После соответствующих преобразований будем иметь

, , (3)

где

.

Полученная система имеет линейных уравнений с неизвестными. Решим эту систему методом прогонки.

Решая уравнение (3) относительно , будем иметь

.

Предположим, что из этого уравнения исключена неизвестная . Тогда это уравнение примет вид

, (4)

где – некоторые коэффициенты.

Отсюда . Подставляя это выражение в (3), получим и, следовательно,

. (5)

Сравнивая формулы (4) и (5), получим для определения рекуррентные формулы:

.

Определим :

.

Из формулы (4) при имеем

. (6)

Поэтому

, . (7)

На основании формул (6) и (7) последовательно определяются коэффициенты до включительно (прямой ход). Обратный ход начинается с определения . Решая систему

,

получим

и по формуле (4) последовательно находим .

Для простейших краевых условий формулы для упрощаются. Полагая получим .

Отсюда .

Пример. Методом прогонки решить краевую задачу:

.

Решение. Пусть .

;

;

; ;

.

Найденные значения записываем в первых двух строках таблицы. Используя известное значение , вычислим и запишем в таблицу. Для значения в последней строке даны значения точного решения .

Таблица 10

0

1

2

3

4

5

0

-0,498

-0,662

-0,878

-0,890

-0,900

0,001

0,002

0,004

0,008

0,012

0

0,1

0,2

0,3

0,4

0,5

0

-0,025

-0,049

-0,072

-0,078

-0,081

0

-0,015

-0,029

-0,041

-0,050

-0,057

6

7

8

9

10

-0,908

-0,915

-0,921

-0,926

0,16

0,022

0,028

0,035

0,6

0,7

0,8

0,9

1

-0,078

-0,070

-0,055

-0,032

0

-0,058

-0,054

-0,044

-0,026

0

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]