Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Біологія екзамен.docx
Скачиваний:
19
Добавлен:
29.08.2019
Размер:
302.65 Кб
Скачать

17. Мейоз.

Мейоз (або редукційний поділ) — особливий вид поділу еукаріотичних клітин, характерний тількистатевим клітинам (не соматичним), унаслідок якого хромосомний набір зменшується вдвічі, клітини переходять з диплоїдного стану в гаплоїдний.

Мейоз складається з двох послідовних поділів, аналогічних мітотичним (з деякими відмінностями),інтерфаза між якими вкорочена, а у рослинних клітинах може бути взагалі відсутня.

Історія вивчення мейозу

Мейоз був вперше вивчений і описаний у яйцях морських їжаків німецьким біологом Оскаром Гертрігом у 1876 році.

У 1883 році мейоз був знову описаний, уже на хромосомному рівні, бельгійським вченим Едуардом фон Бенеденом.

Проте важливість мейозу у спадковості була описана лише у 1890 році німецьким біологом Августом Вайсманом.

Процес мейозу

Інтерфаза-І

Клітина збільшується в розмірах, активно синтезує білки та акумулює енергію в молекулах АТФ, відбувається реплікація (самоподвоєння) ДНК («копії» називаються хроматидами і тримаються разом на кшталт літери Х в зоні центромери — первинної перетяжки).

Профаза-І

(Найтриваліша за часом у мейозі) Під час цієї фази хромосоми починають ущільнюватися і набувають вигляду паличкоподібних структур (спіралізуються). Після цього гомологічні хромосоми (хромосоми однієї пари) зближуються і кон'югують (тісно прилягають одна до одної по всій довжині, обвиваються, перехрещуються). Так утворюються комплекси з 4 хроматид, сполучених між собою в певних місцях, так звані тетради або біваленти. Водночас триває скорочення і ущільнення хромосом. У цей час складається враження, що в ядрі знаходиться не диплоїдний, а гаплоїдний набір хромосом. Під час кон'югації може здійснюватися і кросинговер, коли гомологічні хромосоми обмінюються певними ділянками. У результаті кросинговеру утворюються нові комбінації спадкового матеріалу. Таким чином, кросинговер є одним із джерел спадкової мінливості.

Через певний час гомологічні хромосоми починають відходити одна від одної. При цьому стає помітним, що кожна з них складається з двох хроматид. Наприкінці цієї фази гомологічні хромосоми розходяться, зникає ядерце, руйнується ядерна оболонка і починає формуватися веретено поділу.

Метафаза-І

Число бівалентів удвічі менше від диплоїдного набору хромосом. Біваленти значно коротші, ніж хромосоми в метафазі соматичного мітозу, і розміщаються в екваторіальній площині. Центромери хромосом з'єднуються з нитками фігури веретена. У цю фазу мейозу можна підрахувати кількість хромосом.

Анафаза-І

Нитки веретена поділу скорочуються, гомологічні хромосоми розходяться до протилежних полюсів клітини (при цьому кожна з них складається з двох хроматид).

Наприкінці анафази біля кожного з полюсів клітини опиняється половинний набір хромосом.

Розходження хромосом кожної пари є подією випадковою, що є ще одним джерелом спадкової мінливості.

Телофаза-І

У кожній з дочірніх клітині формується ядерна оболонка.

В клітинах тварин і деяких рослин хромосоми деспіралізуються і поділяється цитоплазма материнської клітини. В клітинах багатьох видів рослин цитоплазма може не ділитися.

Наслідки мейозу-І

Унаслідок першого мейотичного циклу утворюються клітини або лише ядра з половинним порівняно з материнською клітиною набором хромосом.

Інтерфаза-ІІ

Інтерфаза між першим і другими мейотичними поділами вкорочена (в клітинах багатьох рослин відсутня взагалі): молекули ДНК у цей період не подвоюються, тому клітина майже одразу переходить до другого поділу.

Профаза-ІІ

Хромосоми, кожна з яких складається з двох хроматид, ущільнюються, зникають ядерця, руйнується ядерна оболонка (якщо вона була утворена), хромосоми починають пересуватися до центральної частини клітини, знову формується веретено поділу.

Метафаза-ІІ

Завершується ущільнення хромосом і формування веретена поділу. Як і під час мітотичного поділу, центромери хромосом розташовані в одній площині в екваторіальній частині клітини і до них прикріплюються нитки веретена поділу.

Анафаза-ІІ

(Найкоротша з циклу) Поділяються центромери хромосом, хроматиди кожної з хромосом розходяться до різних полюсів клітини і вже можуть називатися хромосомами.

Телофаза-ІІ

Хромосоми знову деспіралізуються, зникає веретено поділу, формуються ядерця і ядерна оболонка.

Завершується телофаза другим поділом клітини (відбуваються процеси, обернені до профази-І).

Наслідки мейозу-ІІ

У результаті другого мейотичного поділу кількість хромосом залишається такою ж, як і після першого, але кількість хроматид кожної з хромосом зменшується вдвічі.

Мейоз є досконалим механізмом, який забезпечує сталість каріотипу видів, які розмножуються статевим способом. Завдяки двом мейотичним поділам статеві клітини мають половинний, порівняно з нестатевими, набір хромосом. А набір хромосом, характерний для організмів певного виду, відновлюється під час запліднення.

Мейоз також забезпечує спадкову мінливість організмів.

18. Властивості цитоплазми.

19. Пластичний та енергетичний обмін.

Живі організми існують тому, що постійно:

а) в них надходять поживні речовини із навколишнього середовища;

б) ці речовини перетворюються в організмі;

в) виводяться з організму продукти життєдіяльності.

Сукупність всіх цих процесів називаєтьсяобмін речовин (метаболізм).

1. Процеси поглинання із довкілля, засвоєння і накопичення хімічних речовин, які необхідні для утворення сполук, необхідних організму, називаються асиміляцією (біосинтезом).

У кожній живій клітині здійснюється величезна кількість хімічних реакцій. Всі вони відбуваються організовано і упорядковано. Кожна реакція відбувається у конкретно визначеному місці і за участю ферментів – каталізаторів, які розміщені на мембранах мітохондрій та ЕПС.

2. Розрізняють 2 типи реакцій у клітині:

І-ший тип – реакції синтезу білків, жирів, вуглеводів, нуклеїнових кислот, тобто асиміляція.

ІІ-ий тип: - реакція розщеплення складних органічних речовин до менш складних сполук (СО2 і Н2О), які супроводжуються виділенням енергії – дисиміляція.

3. Сукупність реакцій біосинтезу називають пластичним обміном.

4. Сукупність реакцій розщеплення, що забезпечують клітину енергією, називають енергетичним обміном.

5. енергетичний та пластичний обміни тісно пов’язані між собою та зовнішнім середовищем і в єдності становлять обмін речовин і енергії в кожній клітині і в організмі в цілому.

Процеси асиміляції не завжди врівноважені з процесами дисиміляції. Так, в організмах, що розвиваються, переважає асиміляція (накопичуються речовини і росте організм).

При інтенсивній фізичній роботі, нестачі поживних речовин та старінні переважають процеси дисиміляції.

Для живих організмів Землі основним джерелом енергії є сонячне світло.

6. Організми, здатні утворювати органічні сполуки з неорганічних називаються автотрофами.

7. Організми, що використовують для утворення органічних сполук з неорганічних енергію світла називають фототрофами (зелені рослини, ціанобактерії).

8. Організми, що використовують для утворення органічних речовин із неорганічних енергію хімічних реакцій називають хемотрофами. (сіркобактерії, залізобактерії).

9. Організми, що використовують для утворення своїх органічних речовин органічні речовини, утворені іншими організмами (живі організми, їх рештки, продукти життєдіяльності), які вони одержують з їжею, називають гетеротрофами.

10. Енергетичний обмін організмів здійснюється у три послідовних етапи:

а) підготовчий.

б) безкисневий (анаеробне дихання)

в) кисневий (аеробне дихання).

№ п/п

Етапи

Місце дії

Процеси енергетичного обміну

Звільнення і використання енергії

1.

Підготовчий етап

у цитоплазмі клітин усіх організмів (у шлунково-кишковому тракті)

Крупні молекули б, ж. при участі ферментів розпадаються на дрібні молекули (мономери) білки ® до амінокислот, жири ® гліцерину і жири кислот, вуглеводи ® моносахарид??? н.кислоти ® до нуклеотидів ® до вільних азотистих основ, пентоз і фосфорної кислоти.

Енергія розсіюється у вигляді теплоти.

2.

Безкисневий (анаеробний) гліколіз етап неповне розщеплення

в клітинах

Амінокислоти, глюкоза та інші речовини, що утворюються на підготовчому етапі, розщеплюються далі.

Розпад однієї молекули глюкози дає енергію, що забезпечує синтез 2х молекул АТФ (виділяється 200 КДж енергії).

3.

Кисневий (аеробний) етап

мітохондріамні мембрани.

Дві молекули молочної кислоти розщеплюються за участю АДФ і фосфорної кислоти.

Енергія від розпаду 2х молекул молочної кислоти використовується для синтезу 36 молекул АТФ

11. Найважливішим на безкисневому етапі енергетичного обміну є розщеплення в клітинах молекул глюкози шляхом гліколізу на дві молекули піровиноградної (С3Н4О3) або молочної кислоти (С3Н6О3) у м’язових клітинах:

С6Н12О6 + 2АДФ + 2Н3РО4 ®2С3Н6О3 + 2АТФ + 2Н2О

У процесі розпаду глюкози беруть участь 13 різних ферментів, фосфорна кислота і АДФ.

Під чол гліколізу виділяється » 200 кДж енергії . 84 кДж використовується на синтез 2х молекул АТФ, а решта (116 кДж) використовується у вигляді теплоти.

Значення гліколізу: організм дістає енергію в умовах дефіциту кисню.

Спиртове бродіння – це один тип перетворення глюкози, коли вона розпадається на 2 молекули етилового спирту

(С2Н5ОН) та 2 молекули вуглекислого газу (СО2)

С6Н12О6 + 2Н3РО4 + 2АДФ = 2СО2 + 2С2Н5ОН + 2АТФ + 2Н2О

Молочнокисле (молочне) бродіння – вид безкисневого бродіння.

12. Після завершення гліколізу настає друга стадія – кисневе розщеплення.

13. Процес кисневого розщеплення описується рівнянням:

2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 ® 36АТФ + 6СО2 + 42Н2О

Це ® дихання

При цьому виділяється енергія (2600 кДж) частина якої розсіюється у вигляді тепла (45%), 55% перетворюється в енергію хімічних зв’язків АТФ (1440 кДж).

14. Сумарне рівняння повного розщеплення глюкози записується так:

Це ® процес дихання.

Процеси надходження в організм із зовнішнього середовища кисню, використання його клітинами і тканинами для окислення органічних речовин і виділення з організму вуглекислого газу називається диханням.

Порівняння вивільненої енергії та кінцевих продуктів при спиртовому бродінні і диханні.

Бродіння

Дихання

Глюкоза

Глюкоза

¯

¯

Піровиноградна кислота

Піровиноградна кислота

¯

¯

¬О2

СО2

СО2

¯

¯

спирт

Н2О

¯

¯

2АТФ

Пластичний обмін (анаболізм, або асиміляція) - це сукупність фізіолого-біохімічних процесів, в ході яких з простих органічних і неорганічних речовин утворюються складніші речовини. Пластичний обмін протікає з витратою високоорганізованої енергії (наприклад, у виді АТФ), яка витрачається на відновлення початкових з'єднань вуглецю шляхом приєднання до них електронів і протонів Для пластичного обміну потрібні первинні джерела вуглецю (початкова "цегла" для утворення органічних речовин) і первинні джерела високоорганізованої енергії та тепла. Усі організми здатні синтезувати складні органічні речовини, використовуючи відносно прості органічні речовини з асиметричним атомом вуглецю. Організми, усі клітини яких потребують готових органічних речовин, називаються гетеротрофними (чи просто гетеротрофами). Проте існують організми, у яких хоч би частина клітин здатна асимілювати (тобто засвоювати) вуглекислий газ. Такі організми називаються автотрофними (чи просто автотрофами). До автотрофів часто відносять прокаріот, що асимілюючихть найпростіші органічні: метан, поліетилен, фенол.  Усі організми здатні отримувати високоорганізовану енергію шляхом катаболізму (тобто за рахунок окислення органічних речовин). Організми, у яких усі клітини отримують високоорганізовану енергію тільки таким шляхом, називаються органотрофними (чи просто органотрофами). Проте існують організми, у яких хоч би частина клітин здатна використати світлову енергію.

38АТФ

Основною характерною рисою хімічної системи живого організму є єдність і взаємозв’язок пластичного й енергетичного обмінів . Речовини, що входять до складу живих клітин, мають дві дуже важливі властивості. По-перше, вони досить стабільні для того, щоб слугувати пластичним, тобто будівельним, матеріалом. По-друге, вони можуть розпадатися під дією ферментів і їх можна використовувати як джерела енергії. Потрібно сказати, що ці властивості мають лише складні біополімери — білки, жири, вуглеводи та нуклеїнові кислоти. Їх молекули водночас стабільні й пластичні, тому можуть утворювати різні структури, обумовлюючи складну будову клітин. Водночас ці органічні сполуки є дуже рухливими тілами, які за наявності ферментів розпадаються, утворюючи активні та здатні до різних реакцій сполуки. Таким чином, під впливом ферментів у процесі окиснення поживних речовин вивільняється енергія. Обмін речовин і всі його окремі реакції можна пояснити лише наявністю в організмі величезної кількості ферментів. Оскільки всі процеси обміну речовин взаємозв’язані в часі та просторі, утворюючи єдине ціле, то будь-які, навіть незначні дії впливають на весь обмін речовин у цілому.

З вищевикладеного видно, що обмін речовин і обмін енергії — це два боки єдиного процесу. Обмін речовин складається з двох різноспрямованих наборів реакцій: анаболізму і катаболізму. У процесі анаболізму з відносно простих попередників будуються складні органічні компоненти клітини. Це реакції пластичного обміну, які часто супроводжуються витратами енергії.

У процесі катаболізму великі органічні молекули, що потрапляють в організм з їжею, розкладаються до простих клітинних компонентів. Це реакції енергетичного обміну, які супроводжуються виділенням вільної енергії. Енергія використовується організмом для підтримки росту, розвитку, розмноження, а також перетворюється в інші форми енергії — механічну, електричну й теплову. Усі процеси анаболізму починаються з певних речовин, але кінцеві речовини можуть бути найрізноманітнішими. Реакції катаболізму, навпаки, починаються з найрізноманітніших попередників, але кінцевим результатом є визначені молекули.

Реакції анаболізму і катаболізму не повторюють одна одну, але є двома потоками речовин, які точно пристосовані до задоволення потреб організму. Ці потреби визначаються середовищем, у якому перебуває даний організм. У людини вони визначаються також сигналами, які даний орган отримує від інших органів через кров, лімфу та особливо нервову систему.

20. Етапи енергетичного обміну.

Див. 19 питання.

21 Автотрофний тип живлення. Фотосинтез і хемосинтез.

Автотрофні організми, автотрофи (від авто — сам та грец. trophe — їжа, харчування) — організми, що синтезують із неорганічних речовин (головним чином води, діоксиду вуглецю, неорганічних сполуказоту) всі необхідні для життя органічні сполуки, використовуючи енергію фотосинтезу (всі зеленірослини — фототрофи) чи хемосинтезу (деякі бактерії — хемотрофи).

Автотрофи, основні продуценти органічної речовини в біосфері, вони забезпечують існування решти організмів.

Фотоси́нтез (від грец. φωτο- — світло та грец. σύνθεσις — синтез, сукупність) — процес синтезу органічних сполук з вуглекислого газу та води з використанням енергії світла й за участю фотосинтетичних пігментів: (хлорофіл у рослин, хлорофіл, бактеріохлорофіл і бактеріородопсин у бактерій), часто з виділенням кисню як побічного продукту. Це надзвичайно складний процес, що включає довгу послідовність координованих біохімічних реакцій. Він відбувається у вищих рослинах, водоростях, багатьох бактеріях, деяких археях і найпростіших — організмах, відомих разом як фототрофи. Сам процес відіграє важливу роль у кругообігу вуглецю у природі.

Фотосинтез – єдиний процес у біосфері, який призводить до засвоєння енергії Сонця і забезпечує існування як рослин, так і всіх гетеротрофних організмів.[1]

Узагальнене рівняння фотосинтезу (брутто-формула) має вигляд:

6СО2 + 6Н2О = С6Н12О6 + 6О2

Хемоси́нтез — це процес синтезу органічних речовин з вуглекислого газу за рахунок енергії окислення аміаку, сірководню і інших речовин, який здійснюється мікроорганізмами в процесі їхжиттєдіяльності.

Хемосинтез був відкритий у 1892 р. російським мікробіологом С. М. Виноградським. Процес хемосинтезу здійснюють хемоатотрофні бактерії:

нітрифікуючі бактерії (окиснюють аміак спочатку до нітритів (солі нітритної кислоти),а згодом - до нітратів (солі нітратної кислоти));

залізобактерії (окиснюють сполуки двовалентного Феруму до трьохвалентного);

сіркобактерії (окиснюють сірководень та інші сполуки Сульфуру до сульфатної кислоти).

Особливостями хемосинтезу, які відрізняють його від фотосинтезу, є те, що цей процес:

здійснюється без участі світла;

відбувається з використанням кисню, тобто це аеробний процес.

У планетарному масштабі хемосинтез становить не більше 1% фотосинтезу, проте він має велике значення для біологічного колообігу та геохімічних перетворень. Значення хемосинтетиків є важливим у природі, оскільки вони беруть участь в утворенні гірських порід, спричиняють корозію металів. Хемоавтотрофні організми можуть жити в океанах на великих глибинах, де є отруйний сірководень. Вони окиснюють його і отримують важливі речовини для життєдіяльності. Хемосинтезуючі бактерії, що окиснюють сполуки Феруму, Мангану, поширені у прісних водоймах. Імовірно, що саме за їх участю впродовж мільйонів років на дні деяких боліт, озер утворилися поклади залізних і манганових руд. Також, деякі хемосинтезуючі бактерії використовуються людиною для очищення стічних вод.