Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_ekz.doc
Скачиваний:
5
Добавлен:
27.09.2019
Размер:
1.42 Mб
Скачать

Вопрос 19

Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x) и её производные входят линейно, т.е. в первой степени:

;

(19)

Если старший коэффициент q0 (x) отличен от нуля на интервале (a, b), т.е. для , то, умножая (19) на , приводим уравнение к виду со старшим коэффициентом, равным 1:

;

(20)

; дальше мы будем рассматривать уравнение (20). Если правая часть уравнения тождественно равна нулю на рассматриваемом интервале (f(x)=0 при ), то уравнение называется однородным. Таким образом, однородное уравнение - это уравнение вида

;

(21)

Задача Коши для уравнений (20) и (21) ставится также, как и для общего уравнения n-го порядка (17) : требуется найти решение уравнения (20) или (21), удовлетворяющее начальным условиям

(22)

где y0, y1, y2, …, yn-1 - заданные числа. Для уравнения (17) теорема существования и единственности решения задачи Коши требовала непрерывности функции и её производных ; если привести (20) к виду (17): , то . Таким образом, условия теоремы Коши приводят к необходимости непрерывности функций f(x) и pi(x), i = 1, 2, …, n. Далее, вывод теоремы Коши для уравнения (17) заключался в том, что найдётся окрестность точки x0, в которой существует однозначно определённое решение задачи Коши; для линейных уравнений (20) и (21) вывод более глобален: единственное решение существует на всём интервале (a, b), на котором выполняются условия теоремы: Теорема существования и единственности решения задачи Коши для линейного уравнения: если функции f(x), pi(x), i = 1, 2, …, n непрерывны на интервале (a, b), x0 - произвольная точка этого интервала, то для любых начальных условий (22) существует единственная функция y(x), определённая на всём интервале (a, b) и удовлетворяющая уравнению (20) и начальным условиям (22). Всё дальнейшее изложение ведётся в предположении, что условия теоремы существования и единственности решения задачи Коши выполняются, даже если это не оговаривается специально.

Определитель Вронского. Линейная зависимость и независимость системы функций. Опр. 14.5.3.1. Система функций y1(x), y2(x), …, yn(x) называется линейно зависимой на интервале (a, b), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a, b): для . Если равенство для возможно только при , система функций y1(x), y2(x), …, yn(x) называется линейно независимой на интервале (a, b). Другими словами, функции y1(x), y2(x), …, yn(x) линейно зависимы на интервале (a, b), если существует равная нулю на (a, b) их нетривиальная линейная комбинация. Функции y1(x), y2(x), …, yn(x) линейно независимы на интервале (a, b), если только тривиальная их линейная комбинация тождественно равна нулю на (a, b). Примеры: 1. Функции 1, x, x2, x3 линейно независимы на любом интервале (a, b). Их линейная комбинация - многочлен степени - не может иметь на (a, b) больше трёх корней, поэтому равенство = 0 для возможно только при . Пример 1 легко обобщается на систему функций 1, x, x2, x3 , …, xn. Их линейная комбинация - многочлен степени - не может иметь на (a, b) больше n корней. 3. Функции линейно независимы на любом интервале (a, b), если . Действительно, если, например, , то равенство имеет место в единственной точке . 4. Система функций также линейно независима, если числа ki (i = 1, 2, …, n) попарно различны, однако прямое доказательство этого факта достаточно громоздко. Как показывают приведённые примеры, в некоторых случаях линейная зависимость или независимость функций доказывается просто, в других случаях это доказательство сложнее. Поэтому необходим простой универсальный инструмент, дающий ответ на вопрос о линейной зависимости функций. Такой инструмент - определитель Вронского.

Опр. 14.5.3.2. Определителем Вронского (вронскианом) системы n - 1 раз дифференцируемых функций y1(x), y2(x), …, yn(x) называется определитель

.

(26)

Фундаментальная система решений линейного однородного дифференциального уравнения. Теорема о структуре общего решения решений линейного однородного дифференциального уравнения. В этом разделе мы докажем, что базисом линейного пространства частных решений однородного уравнения может служить любой набор из n его линейно независимых решений. Опр. 14.5.5.1. фундаментальной системы решений. Фундаментальной системой решений линейного однородного дифференциального уравнения n-го порядка называется любая линейно независимая система y1(x), y2(x), …, yn(x) его n частных решений. Теорема 14.5.5.1.1 о структуре общего решения линейного однородного дифференциального уравнения. Общее решение y(x) линейного однородного дифференциального уравнения есть линейная комбинация функций из фундаментальной системы решений этого уравнения: y(x) = C1 y1(x) + C2 y2(x) + …+ Cn yn(x).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]