Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_ekz.doc
Скачиваний:
5
Добавлен:
27.09.2019
Размер:
1.42 Mб
Скачать

Вопрос 12

Тройной интеграл и его свойства. Пусть - ограниченная замкнутая пространственная область, границей которой является кусочно-гладкая поверхность, и пусть функция  определена и ограничена в  . Посредством сетки кусочно-гладких поверхностей разобьем на конечное число элементарных областей   с объемами (разбиение ). Пусть . наибольший из диаметров областей  , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число ставится в соответствие каждому разбиению  и каждому выбору точек и называется интегральной суммой. Если существует   и он не зависит от выбора разбиения и точек, то функция называется интегрируемой по Риману в области  , а сам предел называется тройным интегралом от функции   по области  и обозначается  . Свойства тройных интегралов такие же, как и у двойных интегралов.

Вычисление тройного интеграла в декартовых координатах. Пусть  является цилиндрическим телом, проекция которого на плоскость  есть область и которое ограничено снизу поверхностью , а сверху v поверхностью , где   - непрерывные функции в . Тогда , то есть интегрированием по z тройной интеграл сводится к двойному интегралу по области . Для областей более сложной формы вычисление двойных и тройных интегралов производится разбиением областей на конечное число простых областей с уже рассмотренными свойствами.

Вычисление тройных интегралов с помощью повторного интегрирования.

1. Предположим, что функция f(x, y, z) непрерывна в рассматриваемой области T.

Пусть сначала T = [a, b; c, d; e, f] - прямоугольный параллелепипед, проектирующийся на плоскость yz в прямоугольник R = [c, d; e, f]. Тогда

Заменяя в (1) двойной интеграл повторным, получим

Вычисление тройного интеграла сводится к последовательному вычислению трёх определённых интегралов.

Если первые два интеграла в (2) объединить в двойной, то будем иметь

где P = [a, b; c, d] - проекция параллелепипеда T на плоскость xy.

Заметим, что в этих случаях можно менять роли переменных.

2. Пусть область T заключена между плоскостями x = a и x = b, причём каждое сечение области T плоскостью представляет собой квадрируемую фигуру G(x)(рис. 1). Тогда

3. Пусть теперь тело T представляет собой "цилиндрический брус", ограниченный снизу и сверху, соответственно, поверхностями z = z1(x, y) и z = z2(x, y), проектирующиеся на плоскость xy в некоторую квадрируемую фигуру G (рис.2), z1(x, y) и z2(x, y) - непрерывны в G. Тогда

Если G = {(x, y): a x b, y1(x) y y2(x)}, то

Отметим, что наряду с указанными формулами имеют место и им подобные, получающиеся перестановкой переменных x, y и z.

II. Замена переменных в тройном интеграле состоит в переходе от переменных x, y, z к новым переменным u, v, w по формулам

Если выполняются условия

1?. Отображение (6) взаимно однозначно;

2?. Функции в (6) непрерывно - дифференцируемы в области

3?. Якобиан отображения

то имеет место формула

Формулы (6) называют криволинейными координатами (u, v, w) в области T. Рассмотрим примеры криволинейных координат.

1. Цилиндрические координаты представляют соединение полярных координат в плоскости xy с обычной декартовой аппликатой z (рис. 3).

Пусть M(x, y, z) - произвольная точка в пространстве xyz, P - проекция точки M на плоскость xy. Точка M однозначно определяется тройкой чисел - полярные координаты точки P, z - аппликата точки M. Формулы, связывающие их с декартовыми, имеют вид

Якобиан отображения (8)

2. Сферические координаты. Пусть M(x, y) - произвольная точка в пространстве xyz, P - проекция точки M на плоскость xy. Точка M однозначно задаётся тройкой чисел , где r - расстояние точки M до точки 0, - угол между лучами OM и OZ, - полярный угол точки P на плоскости xy. Тройка чисел называется сферическими координатами точки M.

Они связаны с прямоугольными формулами

Якобиан отображения . Иногда используются обобщённые сферические координаты.

Объём V кубируемой области T (кубического тела) в пространстве xyz выражается формулой

Переходя в этом равенстве к новым переменным по формулам (6), получим выражение объёма области T в криволинейных координатах

Пусть T - материальное тело (кубируемая область) с плотностью

Тогда

- масса тела.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]