Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_ekz.doc
Скачиваний:
5
Добавлен:
27.09.2019
Размер:
1.42 Mб
Скачать

Вопрос 2

Интегрирование по частям в определенном интеграле

Формула интегрирования по частям в определенном интеграле выводится так же, как и для неопределенного интеграла, и имеет вид

Пример.

Замена переменной в определенном интеграле

Теорема. Пусть дан интеграл , где непрерывна на . Введем новую переменную , связанную с равенством . Если

1)

2) и непрерывны на ,

3) при изменении z от α до β значения не выходят за пределы отрезка то

(5)

Доказательство. Пусть –первообразная для функции , то есть . Тогда по формуле Ньютона–Лейбница

(I)

покажем, что функция является первообразной для функции : =[по правилу дифференцирования сложной функции] = Тогда по формуле Ньютона–Лейбница

(II)

Сравнивая равенства (I) и (II), убеждаемся в справедливости формулы (5).

Пример.

при x=0 при x=ln2

=

При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нахождение приращения первообразной). Такой подход, использующий, в частности, формулы замены переменной и интегрирования по частям для определенного интеграла, обычно позволяет упростить запись решения.

ТЕОРЕМА. Пусть функция φ(t) имеет непрерывную производную на отрезке [α,β], а=φ(α), в=φ(β) и функция f(х) непрерывна в каждой точке х вида х=φ(t), где t [α,β].

Тогда справедливо следующее равенство:

Эта формула носит название формулы замены переменной в определенном интеграле.

Подобно тому, как это было в случае неопределенного интеграла, использование замены переменной позволяет упростить интеграл, приблизив его к табличному (табличным). При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования. Достаточно лишь найти пределы интегрирования α и β по новой переменной t как решение относительно переменной t уравнений φ(t)=а и φ(t)=в. На практике, выполняя замену переменной, часто начинают с того, что указывают выражение t=ψ(х) новой переменной через старую. В этом случае нахождение пределов интегрирования по переменной t упрощается: α=ψ(а), β=ψ(в).

Вопрос 3

Пусть требуется найти значение какой-либо геометрической или физической величины А (площадь фигуры, объем тела, давление жидкости на вертикальную пластину и т. д.), связанной с отрезком [a;b] изменения независимой переменной х. Предполагается, что эта величина А аддитивна, т. е. такая, что при разбиении отрезка [а; b] точкой с є (а; b) на части [а; с] и [с; b] значение величины А, соответствующее всему отрезку [а; b], равно сумме ее значений, соответствующих [а; с] и [с; b].

Для нахождения этой величины А можно руководствоваться одной из двух схем: I схема (или метод интегральных сумм) и II схема (или метод дифференциала).

Первая схема базируется на определении определенного интеграла.

1. Точками х0 = а, x1,..., xn = b разбить отрезок [а;b] на n частей. В соответствии с этим, интересующая нас величина А разобьется на n «элементарных слагаемых» ΔAi (i = 1,...,n): А = ΔA1+ΔА2 +...+ ΔАn.

2. Представить каждое «элементарное слагаемое» в виде произведения некоторой функции (определяемой из условия задачи), вычисленной в произвольной точке соответствующего отрезка на его длину: ΔAi ≈ ƒ(ci)Δxi.

При нахождении приближенного значения ΔАi допустимы некоторые упрощения: дугу на малом участке можно заменить хордой, стягивающей ее концы; переменную скорость на малом участке можно приближенно считать постоянной и т. д.

Получим приближенное значение величины А в виде интегральной суммы:

3. Искомая величина А равна пределу интегральной суммы, т. е.

Указанный «метод сумм», как видим, основан на представлении интеграла как о сумме бесконечно большого числа бесконечно малых слагаемых.

Схема I была применена для выяснения геометрического и физического смысла определенного интеграла.

Вторая схема представляет собой несколько видоизмененную схему I и называется «метод дифференциала» или «метод отбрасывания бесконечно малых высших порядков»:

1) на отрезке [а;b] выбираем произвольное значение х и рассматриваем переменный отрезок [а; х]. На этом отрезке величина А становится функцией х: А = А(х), т. е. считаем, что часть искомой величины А есть неизвестная функция А(х), где х є [a;b] — один из параметров величины А;

2) находим главную часть приращения ΔА при изменении х на малую величину Δх = dx, т. е. находим дифференциал dA функции А = А(х): dA = ƒ(х) dx, где ƒ(х), определяемая из условия задачи, функция переменной х (здесь также возможны различные упрощения);

3) считая, что dA ≈ ΔА при Δх → 0, находим искомую величину путем интегрирования dA в пределах от а до b:

41.2. Вычисление площадей плоских фигур

Прямоугольные координаты

Как уже было установлено (см. «геометрический смысл определенного интеграла»), площадь криволинейной трапеции, расположенной «выше» оси абсцисс (ƒ(х) ≥ 0), равна соответствующему определенному интегралу:

Формула (41.1) получена путем применения схемы I — метода сумм. Обоснуем формулу (41.1), используя схему II. Пусть криволинейная трапеция ограничена линиями у = ƒ(х) ≥ 0, х = а, х = b, у = 0 (см.  рис. 174).

Для нахождения площади S этой трапеции проделаем следующие операции:

1. Возьмем произвольное х  [а; b] и будем считать, что S = S(x).

2. Дадим аргументу х приращение Δх = dx (х + Δх є [а; b]). Функция S = S(x) получит приращение ΔS, представляющее собой площадь «элементарной криволинейной трапеции» (на рисунке она выделена).

Дифференциал площади dS есть главная часть приращения ΔS при Δх → 0, и, очевидно, он равен площади прямоугольника с основанием dx и высотой у: dS = у • dx.

3. Интегрируя полученное равенство в пределах от х = а до х = b, получаем

Отметим,что если криволинейная трапеция расположена «ниже» оси Ох (ƒ(х) < 0), то ее площадь может быть найдена по формуле

Формулы (41.1)и (41.2) можно объединить в одну:

Площадь фигуры, ограниченной кривыми у =  = fι(x) и у = ƒг(х), прямыми х = а и х = b (при условии ƒ2(х) ≥ ƒ1(х)) (см. рис. 175), можно найти по формуле

Если плоская фигура имеет «сложную» форму (см. рис. 176), то прямыми, параллельными оси Оу, ее следует разбить на части так, чтобы можно было бы применить уже известные формулы.

Если криволинейная трапеция ограничена прямыми у = с и у=d, осью Оу и непрерывной кривой х = φ(у) ≥ 0 (см. рис. 177), то ее площадь находится по формуле

И , наконец, если криволинейная трапеция ограничена кривой, заданной параметрически

прямыми х = аих = bи осью Ох, то площадь ее находится по формуле

где а и β определяютсяиз равенств х(а) = а и х(β) =b.

Полярные координаты

Найдем площадь S криволинейного сектора, т. е. плоской фигуры, ограниченной непрерывной линией r=r(φ) и двумя лучами φ=а и φ=β (а < β), где r и φ — полярные координаты (см. рис. 180). Для решения задачи используем схему II — метод дифференциала.

1 . Будем считать часть искомой площади S как функцию угла φ, т. е. S = S(φ), где а ≤φ≤β (если φ = а, то S(a) = 0, если φ=β, то S(β) = S).

2. Если текущий полярный угол φ получит приращение Δφ = dφ, то приращение площади AS равно площади «элементарного криволинейного сектора» OAB.

Дифференциал dS представляет собой главную часть приращения ΔS при dφ→0 и равен площади кругового сектора О АС (на рисунке она  заштрихована) радиуса r с центральным углом dφ. Поэтому

3. Интегрируя полученное равенство в пределах от φ = а до φ = β, получим искомую площадь

Вычисление длины дуги плоской кривой

Прямоугольные координаты

Пусть в прямоугольных координатах дана плоская кривая АВ, уравнение которой у=ƒ(х), где а≤х≤ b.

Под длиной дуги АВ понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего звена ее стремится к нулю. Покажем, что если функция у=ƒ(х) и ее производная у' = ƒ'(х) непрерывны на отрезке [а; b], то кривая АВ имеет длину, равную

Применим схему I (метод сумм).

1. Точками х0 = а, х1..., хn = b (х0 < x1 < ...< хn) разобьем отрезок [а; b] на n частей (см. рис. 183).  Пустьэтим точкам соответствуют точки М0 = А, M1,...,Mn =В на кривой АВ. Проведем хорды М0M1, M1M2,..., Мn-1Мn, длины которых обозначим соответственно через ΔL1, AL2,..., ΔLn. Получим ломаную M0M1M2 ... Mn-ιMn, длина которой равна Ln=ΔL1 + ΔL2+...+ ΔLn =

2. Длину хорды (или звена ломаной) ΔL1 можно найти по теореме Пифагора из треугольника с катетами Δxi и Δуi:

По теореме Лагранжа о конечном приращении функции Δуi=ƒ'(сi)•Δхi, где ci є (xi-1;xi). Поэтому

а длина всей ломаной M0M1... Мn равна

3.Длина l кривой АВ, по определению, равна

.

 Заметим, что при ΔLi→0 также и Δxi →0 ΔLi = и, следовательно, |Δxi|<ΔLi).

Функция непрерывна на отрезке [а; b], так как, по условию, непрерывна функция ƒ'(х). Следовательно, существует предел интегральной суммы (41.4), когда max Δxi→ 0:

Таким образом, или в сокращенной записи  l =

Если уравнение кривой АВ задано в параметрической форме

где x(t) и y(t) — непрерывныефункции с непрерывными производными и х(а) = а, х(β) = b, то длина l кривой АВ находится по формуле

Формула (41.5) может быть получена из формулы (41.3) подстановкой x = x(t),dx = x'(t)dt,

Полярные координаты

Пусть кривая АВ задана уравнением в полярных координатах r = r(φ), а≤φ≤β. Предположим, что r(φ) и r'(φ) непрерывны на отрезке [а;β].

Если в равенствах х = rcosφ, у = rsinφ, связывающих полярные и декартовы координаты, параметром считать угол φ, то кривую АВ можно задать параметрически

Тогда

Поэтому

Применяя формулу (41.5), получаем

Вычисление объема тела

Вычисление объема тела по известным площадям параллельных сечений

Пусть требуется найти объем V тела, причем известны площади S сечений этого тела плоскостями, перпендикулярными некоторой оси, например оси Ох: S = S(x), а ≤ х ≤ b.

Применим схему II (метод дифференциала).

1 . Через произвольную точку х є [a;b] проведем плоскость ∏, перпендикулярную оси Ох (см. рис. 188). Обозначим через S(x) площадь сечения тела этой плоскостью; S(x) считаем известной и непрерывно изменяющейся при изменении х. Через v(x) обозначим объем части тела, лежащее левее плоскости П. Будем считать, что на отрезке [а; х] величина v есть функция от х, т. е. v = v(x)  (v(a) = 0, v(b) = V).

2. Находим дифференциал dV функции v = v(x). Он представляет собой «элементарный слой» тела, заключенный между параллельными плоскостями, пересекающими ось Ох в точках х и х+Δх, который приближенно может быть принят за цилиндр с основанием S(x) и высотой dx. Поэтому дифференциал объема dV = S(x) dx.

3. Находим искомую величину V путем интегрирования dA в пределах от а до В:

Полученная формула называется формулой объема тела по площади параллельных сечений.

Объем тела вращения

Пусть вокруг оси Ох вращается криволинейная трапеция, ограниченная непрерывной линией у = ƒ(х)  0, отрезком а ≤ x ≤ b и прямыми х = а и х = b (см. рис. 190). Полученная от вращения фигура называется телом вращения. Сечение этого тела плоскостью, перпендикулярной оси Ох, проведенной через произвольную точку х оси Ох (х  [а; b]), есть круг с радиусом у= ƒ(х). Следовательно, S(x)=πy2.

П рименяя формулу (41.6) объема тела по площади параллельных сечений, получаем

Если криволинейная трапеция ограничена графиком не прерывной функции х=φ(у) ≥ 0 и прямыми х = 0, у = с,

у = d (с < d), то объем тела, образованного вращением этой трапеции вокруг оси Оу, по аналогии с формулой (41.7), равен

Вычисление площади поверхности вращения

Пусть кривая АВ является графиком функции у = ƒ(х) ≥ 0, где х є [а;b], а функция у = ƒ(х) и ее производная у'=ƒ'(х) непрерывны на этом отрезке.

Найдем площадь S поверхности, образованной вращением кривой АВ вокруг оси Ох.

Применим схему II (метод дифференциала).

1 . Через произвольную точку х є [а; b] проведем плоскость ∏, перпендикулярную оси Ох. Плоскость ∏ пересекает поверхность вращения по окружности с радиусом у = ƒ(х) (см. рис. 192). Величина S поверхности части фигуры вращения, лежащей левее плоскости, является функцией от х, т. е. s=s(x) (s(a)=0 и s(b)=S).

2. Дадим аргументу х приращение Δх = dx. Через точку х + dx є [а; b] также проведем плоскость, перпендикулярную оси Ох. Функция s=s(x) получит приращение Аз, изображенного на рисунке в виде «пояска».

Найдем дифференциал площади ds, заменяя образованную между сечениями фигуру усеченным конусом, образующая которого равна dl, а радиусы оснований рав ны у и у+dy. Площадь его боковой поверхности равна ds=π(у+у+dy)•dl=2πуdl + πdydl. Отбрасывая произведение dydl как бесконечно малую высшего порядка, чем ds, получаем ds=2πуdl, или, так как

3. Интегрируя полученное равенство в пределах от х = а до х = b, получаем

Если кривая АВ задана параметрическими уравнениями х = x(t),y=y(t), t1 ≤ t ≤ t2, то формула (41.9) для площади поверхности вращения принимает вид

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]