Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_ekz.doc
Скачиваний:
5
Добавлен:
27.09.2019
Размер:
1.42 Mб
Скачать

Вопрос 13

Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.

Поверхностный интеграл первого рода Определение

Пусть  — гладкая, ограниченная полная поверхность. Пусть далее на задана функция . Рассмотрим разбиение этой поверхности на части кусочно-гладкими кривыми и на каждой такой части выберем произвольную точку . Вычислив значение функции в этой точке и, приняв за  — площадь поверхности рассмотрим сумму .

Тогда число называется пределом сумм , если:

Предел сумм при называется поверхностным интегралом первого рода от функции по поверхности и обозначается следующим образом:

Параметрическая форма

Пусть на поверхности можно ввести единую параметризацию посредством функций

заданных в ограниченной замкнутой области плоскости и принадлежащих классу в этой области. Если функция непрерывна на поверхности , то поверхностный интеграл первого рода от этой функции по поверхности существует и может быть вычислен по формуле:

, где:

Свойства

Из определения поверхностного интеграла первого рода следует независимость этого интеграла от выбора ориентации векторного поля единичных нормалей к поверхности или, как говорят, от выбора стороны поверхности.

  1. Линейность: ;

  2. Аддитивность: ;

  3. Монотонность:

    • если , то

    • для если , то

  4. Теорема о среднем для непрерывной функции и замкнутой ограниченной поверхности :

.

Поверхностный интеграл второго рода Определение

Рассмотрим двустороннюю поверхность , гладкую или кусочно-гладкую, и фиксируем какую-либо из двух ее сторон, что равносильно выбору на поверхности определенной ориентации.

Для определенности предположим сначала, что поверхность задана явным уравнением причем точка изменяется в области на плоскости , ограниченный кусочно-гладким контуром.

Пусть теперь в точках данной поверхности определена некоторая функция . Разбив поверхность сетью кусочно-гладких кривых на части и выбрав на каждой такой части точку вычисляем значение функции в данной точке и умножим его на площадь проекции на плоскость элемента , снабженную определенным знаком. Составим интегральную сумму:

.

Конечный предел этой интегральной суммы при стремлении диаметров всех частей к нулю называют поверхностным интегралом второго рода от

,

распространенным на выбранную сторону поверхности , и обозначают символом

(здесь ) напоминает о площади проекции элемента поверхности на плоскость

Если вместо плоскости спроектировать элементы поверхности на плоскость или , то получим два других поверхностных интеграла второго типа:

или .

В приложениях чаще всего встречаются соединения интегралов всех этих видов:

где суть функции от , определенные в точках поверхности .

Связь между поверхностными интегралами второго и первого рода

, где — единичный вектор нормали поверхности , — орт.

Свойства

  1. Линейность: ;

  2. Аддитивность: ;

  3. При изменении ориентации поверхности, поверхностный интеграл меняет знак.

Свойства и вычисление поверхностного интеграла по площади поверхности. Если поверхность задана уравнением  и однозначно проектируется на плоскость , то поверхностный интеграл 1-го рода вычисляется по формуле . Нетрудно получить аналогичные формулы, если поверхность однозначно проектируется на другие координатные плоскости. Поскольку вычисление поверхностного интеграла сводится к двойному интегралу, то, естественно, все свойства поверхностного интеграла 1-го рода такие же, как и у двойного.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]