Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полный лекционный курс по физике.doc
Скачиваний:
90
Добавлен:
20.05.2014
Размер:
1.16 Mб
Скачать

2.5 Постоянная Больцмана

Постоянная Больцмана физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равноДж/К

3.1 Статистическое описание молекулярного ансамбля.

По молекулярно кинетической теории, как бы не изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул в газе находящемя в состоянии равновесия остается постоянной и равной . Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарно, не меняющееся со временем распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Этот закон теоретически выведен Максвеллом.

3.2 Распределение Максвелла

Закон Максвелла описывается некоторой функцией f(v),называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv,то на каждый интервал будет приходиться некоторое число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv откуда f(v)=dN(v)/N dv применяя методы теории вероятностей, Максвелл нашел функцию f(v) закон для распределения молекул для распределения молекул идеального газа по скоростям.

3.3Распределение молекул по компонентам скоростей

Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям fv пропорциональна плотности распределения по импульсам:

и используюя p = mv мы получим:

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе [dvx, dvy, dvz] около скорости v = [v x , v y , v z ] равна

3.4Распределение молекул в потенциальном поле.

Исходя из распределения молекул по скоростям (стр79Т)

Можно найти распределение молекул газа по значениям кинетической энергии E . Для этого перейдем от переменной v к переменной .Подставим

получим

где dN(E)-число молекул, имеющих кинетическую энергию поступательного движения, заключенную в интервале от E до E+dE

Таким образом функция распределения молекул

3.6 Распределение Больцмана

В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:

n = n0exp( -mgh / kT )

где n - концентрация молекул на высоте h, n0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

Больцман доказал, что распределение справедливо не только для потенциального поля сил земного тяготения, но и в любом поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического движения.

3.7 Барометрическая формула

Барометрическая формула позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти высоту.(т стр80)

3.8Эксперементальное подтверждения распределения Максвелла и Больцмана

Распределение максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана(С стр323)

4.1Первое начало термодинамики

Количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Первое начало термодинамики:

а) при изобарном процессе

б) при изохорном процессе (A=0)

в) при изотермическом процессе (ΔU = 0)

4.2Степень свободы молекул

Подавляющее большинство физических систем может находиться не в одном, а во многих состояниях, описываемых как непрерывными (например, координаты тела), так и дискретными (например, квантовые числа электрона в атоме) переменными. Независимые «направления», переменные, характеризующие состояния системы, и называются степенями свободы.

Для газа, состоящего из одноатомных молекул (i = 3)

Для газа, состоящего из двухатомных молекул (i = 5)

Для газа, состоящего из многоатомных молекул (i = 6)

4.3 Молекулярно кинетическая теория теплоемкости

Теплоемкость какого-либо тела называется величина, равная количеству тепла,которое нужно сообщить телу,чтобы повысить его температуру на 1 кельвин.

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа). Если речь идёт не о каком-либо теле, а о некотором веществе как таковом, то различают удельную теплоёмкость — теплоёмкость единицы массы этого вещества и молярную — теплоёмкость одного моля его.