Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полный лекционный курс по физике.doc
Скачиваний:
90
Добавлен:
20.05.2014
Размер:
1.16 Mб
Скачать

6.2 Политропические процессы

Политропный процесс — термодинамический процесс, во время которого удельная теплоёмкость тела остаётся неизменной. Частными явлениями политропного процесса являются изопроцессы и адиабатный процесс.

Для идеального газа уравнение политропы может быть записано в виде:

pVn = C

где величина называется показателем политропы.

6.3 Средняя длина свободного пробега и число столкновении молекул.

Длиной свободного пробега молекулы газа называется расстояние, пролетаемое молекулой от одного столкновения до следующего. Эта величина в процессе соударений изменяется случайным образом, поэтому необходимо ввести среднее значение этой физической величины.

Для определения частоты столкновений и длины свободного пробега допустим, что все молекулы покоятся, а одна из них движется со средней тепловой скоростью v. Пусть все молекулы имеют одинаковый диаметр d. Пусть концентрация молекул равна n, причем для виртуального двумерного движения под концентрацией следует понимать число частиц, относящееся к единице площади

Вычислим число ударов, испытываемых летящей частицей за одну секунду. За это время она проходит путь, равный скорости. v, т.е. . Число частиц, находящихся на этой площади, равна. Это величина равна числу столкновений выделенной молекулы с другими частицами за 1 секунду. Разделив на эту величину путь v, пройденной молекулой за секунду, получим выражение для средней длины свободного пробега:

Эта формула получена в модели, в которой сталкивающаяся молекула имеет среднюю скорость, а остальные молекулы неподвижны. Учет реального движения других молекул довольно сложен, но практически не изменяет эту формулу, в ней дополнительно появляется лишь несущественный безразмерный множитель в знаменателе

7.1 Второе начало термодинамики

Энтропия системы может только возрастать(либо до достижения максимального значения оставаться неизменной) носит название закона возрастания энтропии или второго начала термодинамики dS>0

7.2Процессы обратимые и необратимые

Термодинамический процесс называется обратимым.если он может происходить как в прямом так и в обратном направлении, при чем если такои процесс происходит сначала в прямом, а потом в обратном направлении и система возвращается в исходное состояние, то в окр. среде и этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям является не обратимым.

7.3 принцип получения работы за счет тепловой энергии

Совершив цикл,рабочее вещество возвращается в исходное состояние. Поэтому изменение внутренней энергии за цикл равно нулю. Количество тепла, сообщаемого рабочему телу за цикл равно Q1-Q2 , где Q1 тепло получаемое рабочим телом при расширении, а Q2 тепло отдаваемое при сжатии. Работа А, совершаемая за цикл равна площади цикла. Таким образом. Выражение написанное для цикла имеет вид:

А= Q1-Q2

7.4 Циклические процессы

Термодинамический цикл - термодинамический процесс, в результате которого термодинамическая система после ряда изменений своего состояния возвращается в первоначальное состояние

7.5 Циклы идеальные и реальные

7.6Цикл Карно и его КПД

Цикл, состоящий из двух изотерм и двух адиабат. Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.. Для цикла Карно кпд определяется только температурами нагревателя и холодильника. Кроме того, КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю

7.7Энтропия

Термодинами́ческая энтропи́я S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы; её существование постулируется вторым началом термодинамики. изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

7.8Второе начало термодинамики и его статистический смысл Гипотиза Больцмана о связи энтропий и вероятности состояния.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Клаузиус, рассматривая второе начало термодинамики, пришёл к выводу, что энтропия Вселенной как замкнутой системы стремится к максимуму, и в конце концов во Вселенной закончатся все макроскопические процессы. Это состояние Вселенной получило название «тепловой смерти». С другой стороны, Больцман высказал мнение, что нынешнее состояние Вселенной — это гигантская флуктуация, из чего следует, что большую часть времени Вселенная все равно пребывает в состоянии термодинамического равновесия («тепловой смерти»).