Добавил:
Без скрытых скриптов, криптомайнинга, вирусов и прочего, - чистая литература. 你好,所有那些谁花时间翻译中国 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Д6436 Рогов БА Оборудование для перемешивания и смешивания мясного или рыбного сырья.doc
Скачиваний:
28
Добавлен:
13.09.2020
Размер:
5.34 Mб
Скачать

Основы методик инженерного расчета смесителей

В общем виде мощность (N), расходуемая на перемешивание, зависит от частоты вращения мешалки, физических свойств перемешиваемой среды, геометрических характеристик аппарата и мешалки

N = f (nм, , , dм, D, Н,…), (6)

где nм – частота вращения мешалки; ρ – плотность дисперсной среды; η – вязкость дисперсной среды (динамическая или эффективная); dм – диаметр мешалки; D – диаметр емкости; Н – высота емкости.

Расход энергии на перемешивание различных жидкофазных сред и дисперсных систем (ньютоновских и неньютоновских жидкостей), в том числе и измельченного мясного и рыбного сырья, можно определить по критериальным уравнениям типа

KN = a, (7)

где K= – критерий Эйлера (критерий мощности); Reц = – центробежный критерий Рейнольдса; Frц= – центробежный критерий Фруда; a, b, c эмпирические коэффициенты.

Перемешивание рыбных и мясных продуктов, теста для рыбных палочек и т. д. осуществляется при ламинарном течении, поэтому влияние силы тяжести весьма незначительны и значение числа Фруда на общую затрату энергии может не учитываться в уравнении (7).

Определение мощности различных типов оборудования для перемешивания жидкофазных пищевых сред в виде смесей, суспензий и эмульсий на стадии процесса их производства требуется для выбора оптимальных геометрических и режимных параметров работы перемешивающих устройств и приводов.

Мощность, потребляемая мешалкой определеляется из формулы

N = V Р, (8)

где V – расход жидкости, м³/с; Р – давление, создаваемое мешалкой, Па.

Расход жидкости можно вычислить, предполагая, что жидкость проходит через боковую поверхность цилиндра с диаметром, равным диаметру мешалки dм, и высотой, равной высоте лопасти мешалки b, со скоростью пропорциональной окружной скорости конца лопасти мешалки

V ~ π dм b π n dм ~ n d, (9)

где n – частота вращения мешалки, с–1.

Давление, создаваемое мешалкой, пропорционально динамическому давлению

Р ~ ρ n2 d (10)

Тогда из формулы (8) с учетом зависимостей (9) и (10) получим:

N ~ ρ n3 d (11)

При определении номинальной мощности различных типов мешалок используется уравнение

N = K ρ n3 d, (12)

где K безразмерный комплекс, называемый критерием мощности (K= Eum число Эйлера).

Число Эйлера рассчитывается в зависимости от типа мешалки и режима движения перемешиваемой жидкости. Режим определяется по видоизмененному критерию Рейнольдса (Re)

Re= ρ n d / μ, (13)

где μ – вязкость жидкости, Пас.

По графикам зависимости K от Re [4, рис.VII-6], полученных на основании экспериментальных данных исследователей, с учетом типа и геометрии мешалки по номеру кривой [4, рис.VII-1] графической зависимости Eu= f(Re), определяется значение критерия мощности.

Для определения мощности на перемешивание неньютоновских сред и дисперных систем в условиях ламинарного режима в цилиндрических аппаратах с перемешивающими устройствами используется зависимость

N = Cэф n2 d, (14)

где С – коэффициент, учитывающий геометрические соотношения размеров корпуса аппарата и перемешивающих устройств эф эффективная вязкость продукта.

Известно, что эффективная вязкость неньютоновских сред и дисперс-ных систем, к которым относятся мясные или рыбные вязкопластичные, фарше- и пастообразные продукты, в цилиндрических аппаратах с переме-шивающими устройствами определяется по формуле

эф = k γm1 = k (An)m1, (15)

где k – показатель консистенции; A – коэффициент пропорциональности; γскорость сдвига; n – частота вращения мешалки; m – показатель неньютоновского поведения среды.

Для пластичных и псевдопластичных жидкостей при ламинарном и переходном режиме перемешивания турбинными мешалками с прямыми лопастями А = 11,5±1,4; турбинными мешалками с наклонными лопастями А = 13±2; пропеллерными мешалками – А = 10±0,9. Для перечисленных типов мешалок предлагается использовать среднее значение А = 11.

Для мешалок скребкового типа, применяемых в аппаратах с очищаемой поверхностью, величина коэффициента А зависит от числа скребков и может быть вычислена по формуле

А = 110 z. (16)

В результате приближенного решения дифференциальных уравнений движения и реологического уравнения Оствальда-де-Виля выражение эффективной вязкости для цилиндрических емкостей с мешалкой имеет вид:

эф = k , (17)

где D, d – диаметры емкости и мешалки, соответственно.

Течение мясных и рыбных фаршей описывается реологическим уравнением течения Гершеля-Балкли и эффективная вязкость эф (Пас) определяется по уравнению течения степенной жидкости [5]

эф = ()m = ВW, (18)

где , В – эффективная вязкость при единичном значении градиента скорости или при окружной скорости (W1), равной единице, Пас; W* – относи-тельная скорость вращения ротора вискозиметра, м/c (W* = W/W1);  – градиент скорости, с–1; W1 – окружная скорость вращения ротора единице его измерения, м/c; W – средняя скорость потока или окружная скорость боковой поверхности ротора вискозиметра, м/c; m – темп разрушения структуры (m = n–1); n – индекс течения.

Чем более значение n отличается от единицы, тем более выражена аномалия вязкости.

Основные реологические характеристики мясных и рыбных продуктов представлены в справочной литературе [5–7].

Смесители для приготовления фарша, посола измельченного мяса и рыбы преимущественно являются агрегатами периодического действия.

Призводительность такого вида оборудования (кг/ч) равна

Q = 3600 m /T = V ρ φ / t1 + t2+ t3, (19)

где m – масса загружаемого сырья, кг; T – продолжительность полного цикла работы смесителя, с; V – геометрический объем дежи, м³; ρ – плотность перемешиваемого продукта, кг/ м³ (для фарша ρ = 900 кг/м³); φ – коэффициент использования объема дежи (φ = 0,5–0,7); t1 – продолжитель-ность загрузки смесителя, с; t2 – продолжительность перемешивания, с; t3 продолжительность выгрузки сырья из дежи, с.

Геометрический объем дежи Vд двухшнекозого (двухвального) смесителя (рис. 29), образованный объемами двух полуцилиндров (Vц1 и Vц2) и прямоугольного параллелепипеда (Vпар), можно определить по формуле

Vд = (Vц1+Vц2)/2 + Vпар = D2L/4 + ahL = L(D2/4+ah) = LD(D/4+2h). (20)

Рис. 28. Геометрическая модель дежи

Продолжительность процесса вымешивания для некоторых видов колбас представлена в табл. 5.

Таблица 5

Соседние файлы в предмете Процессы и аппараты пищевых производств