Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
426
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

54

Глава 4 ЛАМПЫ БЕГУЩЕЙ И ОБРАТНОЙ ВОЛНЫ ТИПА О (ЛБВО, ЛОВО)

Вприборах типа О, как уже отмечалось ранее (см., Введение), происходит преобразование кинетической энергии электронов в энергию СВЧ-поля, так же как в пролетных и отражательных клистронах. Рассматриваемые ниже лампы бегущей волны и обратной волны принципиально отличаются от клистронов тем, что взаимодействие электронов и СВЧ-поля длительное, а не кратковременное.

§4.1. Принцип работы приборов типа О с длительным взаимодействием

Вприборах с длительным взаимодействием, так же как и в клистронах, имеется модуляция скорости электронов и плотности электронного потока. Длительное взаимодействие электронов с полем бегущей волны позволяет получить необходимое группирование электронов при сравнительно слабом входном сигнале. Очевидно, что обмен энергией между электронами и полем происходит в результате взаимодействия электронов с составляющей напряженности поля, совпадающей по направлению со скоростью электронов. Назовем эту составляющую продольной.

Представим продольную составляющую поля Еz в виде бегущей волны

(4.1)

где β—коэффициент фазы (волновое число)

(4.2)

а vф — фазовая скорость волны.

Нетрудно предвидеть, что длительное взаимодействие электронов с бегущей волной эффективно только при синхронном движении волны и электронов, когда начальная скорость электронов и фазовая скорость волны vф совпадают по направлению и мало различаются по величине. При этих условиях взаимодействие удобнее наблюдать в системе координат, движущейся вместе с волной. Поэтому произведем преобразование z=z'+vфt, где z'—координата электрона в подвижной системе. Наблюдателю, находящемуся в этой системе, сама волна представляется неподвижной, так как составляющая напряженности поля Еz является лишь синусоидальной функцией z'. В процессе взаимодействия электрона и поля волны скорость электрона должна изменяться, т. е. наблюдатель будет замечать изменение координаты электрона z''. Однако вследствие гармонической зависимости Еz от z' удобно вместо z' использовать фазовый угол ϕ=ω z'/vф, который определяет положение электрона относительно волны, т. е. наглядно характеризует взаимодействие. Угол ϕ принято называть фазой электрона. Фазу электрона ϕ0, соответствующую его влету в СВЧ-поле (z=0), называют начальной. Выбранному значению ϕ0 соответствует определенная начальная координата ϕ0 в подвижной системе координат. Электроны, влетающие в СВЧ-поле равномерно в течение периода Т=2π/ω, занимают интервал начальных фаз ϕ0=0–2π и равномерно располагаются вдоль оси координат z' на отрезке, равном одной длине волны.

Взаимодействие электрона с полем зависит от начальной фазы, поэтому координата z и фаза ϕ0 (или пропорциональная ей координата z') функции как времени t, так и начальной фазы ϕ0: z(t,ϕ0) и ϕ(t,ϕ0). Эти функции нельзя представить в аналитическом виде. Ограничимся приближенным графическим изображением связи, которая существует между z и ϕ (или z') при некоторых заданных значениях ϕ0. Эту связь, как в клистронах, назовем пространственно-временной диаграммой, так как она позволяет судить об изменении взаимного расположения электронов с течением времени.

55

На рис. 4.1,а изображена пространственно-временная диаграмма для случая, когда начальная скорость электронов v0 равна фазовой скорости бегущей волны vф (v0=vф). Вследствие периодичности изменения поля достаточно рассмотреть движение электронов, начальные фазы которых заключены в интервале от 0 до 2π. Чтобы не усложнять диаграмму, приведенную на рис. 4.1, взяты пять электронов с начальными фазами через π/2. Электрон 5 аналогичен электрону 1, но отличается от последнего тем, что входит в СВЧ-поле раньше на целый период. При отсутствии взаимодействия скорость электронов остается неизменной и равной начальному значению v0. Так как в рассматриваемом случае v0=vф, то положение электронов относительно волны не изменяется. Таким образом, фазы электронов при отсутствии взаимодействия (нет поля) остаются равными начальным значениям фазы и пространственно-временную диаграмму изображают пунктирными прямыми, параллельными оси z. Найдутся электроны, которые не будут взаимодействовать с полем, когда оно включено: это электроны 1, 3, 5, начавшие

Рис. 4.1

движение при нулевом значении СВЧ-поля. Пространственно-временная диаграмма для этих электронов совпадает с пунктирными прямыми. Остальные электроны взаимодействуют с СВЧ-полем и, следовательно, изменяют скорость. Скорость электрона 2, начавшего движение в ускоряющем поле волны, увеличивается, поэтому он опережает волну. Фаза ϕ этого электрона возрастает и с течением времени стремится к значению фазы электрона 3. Пространственно-временные диаграммы электронов 2 и 3 с увеличением времени, т. е. с ростом z, сближаются. Очевидно также, что должно происходить уменьшение скорости электрона 4, взаимодействующего с тормозящим СВЧ-

56

полем. Этот электрон начинает отставать от волны и его пространственно-временная диаграмма отклоняется влево от пунктирной прямой и приближается с увеличением z к диаграмме электрона 3.

Следовательно, при выполнении условия v0=vф происходит группирование электронов, влетевших в СВЧ-поле в пределах периода, около электрона 3, начавшего движение в нулевом поле, соответствующем переходу от ускоряющей к тормозящей полуволне. Если группирующиеся электроны располагаются симметрично относительно электрона 3, то электроны, находящиеся в ускоряющем поле, отбирают от СВЧ-поля столько же энергии, сколько энергии отдают полю электроны, находящиеся в тормозящем поле. В этом случае энергия поля не изменяется, т. е. отсутствует усиление.

На рис. 4.1,б представлены пространственно-временные диаграммы для случая, когда начальная скорость электронов немного меньше фазовой скорости волны (v0vф). Очевидно, что вследствие такого различия скоростей пунктирные линии, соответствующие отсутствию взаимодействия, должны быть наклонены влево (электроны отставали бы от волны). Влияние взаимодействия проявляется в том, что ускоряющее поле стремится уменьшить отставание электронов, а тормозящее – увеличить. Поэтому диаграммы для электронов 2, 3 отклоняются вправо, а для электрона 1, 4, 5 – влево от соответствующих пунктирных прямых.

Таким образом, при выполнении условия v0 vф также происходит группирование электронов, однако основная часть рассматриваемых электронов оказывается в ускоряющем поле волны. В этом случае энергия, отбираемая ускоряемыми электронами от волны, превышает энергию, отдаваемую волне остальными электронами, т. е. происходит уменьшение амплитуды волны.

Пространственно-временная диаграмма, приведенная на рис. 4.1,б, соответствует случаю, когда начальная скорость электронов немного превышает фазовую скорость волны (v0vф). Очевидно, что пунктирные линии, характеризующие отсутствие взаимодействия, наклонены вправо (электроны опережали бы волну). Взаимодействие электронов с ускоряющим полем увеличивает разность скоростей и усиливает опережение, а взаимодействие с тормозящим полем – уменьшает разность скоростей и ослабляет опережение. Диаграммы для электронов 1, 2, 5 отклоняются вправо от пунктирных прямых, а для электронов 3, 4 – влево. Происходит группирование основной части электронов в тормозящем поле волны. Таким образом, при v0vф энергия, отдаваемая основной частью потока электронов полю волны, превышает энергию, отбираемую от поля остальными электронами, и возможно усиление СВЧ-поля.

Не следует думать, что можно увеличить передаваемую энергию, выбирая v0 значительно больше vф. При большой разнице скоростей электрон быстро опережает волну и поочередно взаимодействует с ускоряющими и тормозящими полуволнами поля в среднем не получая и не отдавая энергии. Обычно разность v0 и УФ составляет не более 5– 10%. Поэтому эффективная передача энергии от электронов бегущей волне происходит при условии

v0vф,

(4.3)

которое называется условием примерного синхронизма.

Фазовая скорость волны в обычных линиях передачи равна скорости света или превышает ее. Так как электронам нельзя сообщить такую скорость, то при обычных линиях передачи невозможно выполнить условие синхронизма (4.3). В электронных СВЧприборах с бегущей волной применяют специальные линии передачи – замедляющие системы, обеспечивающие понижение фазовой скорости волны до величины значительно меньшей скорости света. Тогда подбором ускоряющего напряжения можно получить

57

Рис. 4.2

требуемую для выполнения условия примерного синхронизма (4.3) скорость электронов. Для большей определенности последующего рассмотрения на рис. 4.2 приведена схема устройства типовой маломощной ЛБВ типа О. Электронная пушка (прожектор) образована катодом 1, управляющим электродом 2, первым анодом 3 и вторым анодом 4. Эта система электродов обеспечивает необходимую начальную фокусировку пучка и регулировку его тока. Последняя производится изменением потенциала управляющего электрода или первого анода. Второй анод 4 через трубку 6 («антеннку») соединен со спиральной замедляющей системой 7. Трубка является элементом связи замедляющей системы с входным волноводом 5, к которому подводится усиливаемый сигнал. Такая же антеннка используется для связи с выходным волноводом 9. Для согласования входного и выходного волноводов с замедляющей системой предусмотрены подстроечные элементы 11. Положение спирали задается кварцевыми стержнями или трубками. На поверхность этих держателей наносят слой поглотителя 8 для предотвращения самовозбуждения ЛБВО. Электронный поток проходит внутри спирали, взаимодействует с СВЧ-полем спирали и затем попадает на коллектор 10, который имеет форму стакана или конуса. Фокусирующая система (соленоид) 12 обеспечивает фокусировку электронного пучка на

всей длине прибора.

Соседние файлы в папке СВЧ