Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
426
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

110

§7.6.Особенности устройства и применения многорезонаторных магнетронов

Различные по назначению магнетроны перекрывают диапазон частот от 300 МГц до 300 ГГц. Выходная мощность магнетронов непрерывного действия составляет от долей ватта до нескольких десятков киловатт, а магнетронов импульсного действия—от 10 Вт до 10 МВт. Электронный КПД магнетронов может превышать 70%. Полный КПД, равный произведению электронного КПД и КПД колебательной системы, также высокий, так как собственная добротность резонаторов велика (порядка 1000). Магнетроны используют в мощных передающих устройствах, например в передатчиках радиолокационных станций. Магнетроны применяют также в ускорителях заряженных частиц и в установках для высокочастотного нагрева.

Основные элементы магнетрона: анодный блок (колебательная система), катодный блок, узел вывода СВЧ-энергии, система перестройки частоты и магнитная система. Часть этих элементов показана на рис. 7.1.

Для создания магнитного поля обычно используют постоянные магниты, но в мощных магнетронах и электромагниты. Индукция поля составляет 0,1—0,5 Т, причем большие значения обычно соответствуют магнетронам с меньшей длиной волны и импульсным магнетронам. В некоторых магнетронах магниты конструктивно составляют единое целое с вакуумной камерой. Такие магнетроны называют пакетированными.

Число резонаторов в анодном блоке зависит от рабочей частоты и изменяется от 8 до 40 при переходе из сантиметрового в миллиметровый диапазон волн. Резонаторы могут быть щелевые (см. рис. 7.11), типа «щель—отверстие» (см. рис. 7.1) и лопаточного типа (секторные резонаторы). Для улучшения охлаждения наружную поверхность блока делают ребристой. В мощных магнетронах применяют принудительное воздушное или водяное охлаждение. Для вывода энергии из магнетрона используют коаксиальные (см. рис. 7.1), волноводные и коаксиально-волноводные системы.

Выпускают магнетроны, работающие на фиксированной частоте, и магнетроны, частоту которых можно перестраивать в небольшом диапазоне (от 5 до 10%) механическим изменением емкости или индуктивности резонаторов (перестраиваемые магнетроны). Механическая перестройка инерционна и по величине диапазона недостаточна для некоторых применений.

Исследования электронного смещения частоты привели к созданию нового класса приборов магнетронного типа—митронов.

 

 

 

Рис. 7.17

 

Рис. 7.18

Схема митрона показана на рис. 7.17. Высокочастотной системой митрона служит встречно-штыревая структура, свернутая в кольцо. Штыри укреплены на двух дисках. Структура связана с внешней колебательной системой, имеющей низкую добротность (1,5—10). Внутри высокочастотной анодной структуры находится холодный катод.

111

 

 

Рис. 7.19

Рис. 7.20

Горячий катод, эмиттирующий электроны, расположен ниже анодной структуры. Между горячим катодом и анодной структурой находится управляющий электрод. Вся система элементов механически связана при помощи керамических шайб и помещена между полюсами магнита.

Кольцевой электронный поток входит в пространство между высокочастотной анодной структурой и холодным катодом (пространство взаимодействия). В результате взаимодействия азимутальных флуктуации электронного потока (электронно-волновые колебания) с колебательной системой возникают колебания магнетронного типа, а электронный поток приобретает форму спиц. Митрон, как и обычный магнетрон, работает на π-виде колебаний.

При регулировке анодного напряжения изменяются напряженность радиального электрического поля в пространстве взаимодействия и скорость вращения спиц вокруг холодного катода. Это должно вызывать электронное смещение частоты. С изменением частоты в узких пределах (5—20%) выходная мощность митронов в непрерывном режиме составляет 3—150 Вт, а при широких пределах (примерно до двух раз)—0,5—3 Вт. Достоинство митронов—хорошая линейность частотной характеристики и безынерционность перестройки частоты.

Обычно в магнетроне рабочим является π-вид колебаний. В § 7.4 рассмотрена стабилизация этого вида колебаний. Устойчивое возбуждение колебаний π-вида можно обеспечить также применением высокодобротного контура, связанного с резонансной системой магнетрона. Собственная частота этого стабилизирующего контура должна быть равна частоте π-вида колебаний. Такой способ выделения π-вида колебаний используется в коаксиальном магнетроне (рис. 7.18). Снаружи анодного блока расположен резонатор, связанный с помощью щелей с резонаторами.

Т а б л и ц а 6

Параметры некоторых магнетронов

Вкоротковолновой части сантиметрового и в миллиметровом диапазонах волн применяют обращенный коаксиальный магнетрон (фрагмент показан на рис. 7.19), в

котором сплошной катод расположен снаружи анодной резонаторной системы, а стабилизирующий коаксиальный резонатор сделан внутри анодного блока, по оси прибора.

Втабл. 6 приведены параметры многорезонаторных магнетронов и его разновидностей,

ана рис. 7.20—внешний вид импульсного магнетрона.

Соседние файлы в папке СВЧ