Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
426
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

159

§ 11.3. Режим ограниченного накопления объемного заряда и гибридные режимы

Режим ограниченного накопления объемного заряда (ОНОЗ). Название режима связано с тем, что в нем домены не успевают сформироваться и объемный заряд в каждой неустойчивости оказывается ограниченным, т. е. меньшим заряда в полностью сформированном домене. Для получения такого режима период колебаний должен быть много меньше времени формирования домена (T<<tф).

Рис. 11.14

Предположим, что к образцу приложено постоянное напряжение U0, больше порогового значения (U0>U0п), и переменное напряжение с амплитудой U1>(U0— U0п), как показано на рис. 11.14. Когда результирующее напряжение превысит U0п, начинает образовываться домен. Если в ту часть периода, пока U0>U0п домен не успевает сформироваться (условие режима ОНОЗ), то зависимость тока от поля не совпадает с вольт-амперной характеристикой прибора с доменной неустойчивостью, как в прежних режимах, а повторяет вольт-амперную характеристику образца без домена, т. е. зависимость дрейфовой скорости от поля. При этом ток сначала уменьшается, а затем

растет до значения Iмакс при U0=U0п. В эту часть периода образец ведет себя как отрицательное сопротивление и происходит передача мощности в СВЧ-цепь. В

оставшуюся часть периода t˝=Tt/ U<U0п по определению режима объемный заряд должен рассасываться. Если он не успевает исчезнуть, то за несколько периодов накопится такой заряд, что прибор выйдет из режима ОНОЗ. В интервале tприбор ведет себя как положительное сопротивление (поглощение мощности), а ток изменяется в соответствии с начальной ветвью вольт-амперной характеристики. Таким образом, изменение тока имеет сложный вид, определяемый характеристикой v(Е).

Нарастание объемного заряда в активную часть периода t’ определяется дифференциальным максвелловским временем (11.19), соответствующим падающему участку кривой v(Е):

где µ—средняя по времени отрицательная дифференциальная подвижность:

160

Рассасывание заряда определяется максвелловским временем релаксации полупроводника в слабом поле по формуле (11.22):

Чтобы накопленный за время t′ заряд рассасывался за время t"=T—t'=tp, необходимо

или

(11.53)

Это условие ограничивает минимальное значение tp/T, а, следовательно, и минимальную амплитуду напряжения U1 при заданном постоянном напряжении U0 (чем меньше U1, тем меньше tp). Максимальное значение tp определяется мощностью потерь.

СВЧ-мощность, создаваемая в единице объема при амплитудах первой гармоникой тока I1 и напряжения U1=E1 (E1 – амплитуда напряженности поля), равна P=U1I1/2. Отрицательное дифференциальное сопротивление образца

(11.54)

Используя формулу (11.54), получаем

(11.55)

т. е. в режиме ОНОЗ произведение мощности на сопротивление не зависит от частоты и определяется амплитудой переменной составляющей поля в домене Е1 и длиной образца L. Величина Е1 ограничена условием (11.53) на время рассасывания. Связь Е1 и tp определяется очевидным соотношением (см. рис. 11.14)

Режим ОНОЗ особенно эффективен на высоких частотах (f/10 ГГц), так как в нем, в отличие от других режимов, нет ограничения на время пролета и время формирования домена. Однако имеется принципиальное ограничение для частоты, связанное с тем, что, как уже отмечалось, на частотах более 20 ГГц зависимость дрейфовой скорости от поля заметно отличается от статической зависимости. Расчеты показывают, что максимальная частота генерации не может превысить 200 ГГц. Наибольшая достигнутая частота в режиме ОНОЗ составляет 160 ГГц. Отмеченное принципиальное ограничение приводит к падению КПД с ростом частоты. Максимальное значение КПД на частоте около 20 ГГц составляет 20—25%. Значение КПД можно несколько увеличить (до 30%), если обеспечить получение несинусоидальной формы напряжения на приборе. Подобное влияние гармоник на КПД проявляется и в других приборах. Для создания несинусоидальной формы напряжения необходимо, чтобы резонатор возбуждался колебаниями тока как на рабочей частоте, так и на ее гармониках.

Режим ОНОЗ характеризуется большой амплитудой колебаний. Однако ввод в этот режим представляет значительные трудности.

В режиме ОНОЗ частота колебаний определяется внешней цепью (резонатором), при этом применяют как механическую, так и электрическую перестройку последнего с помощью варакторного диода.

Гибридный режим. Этот режим является промежуточным между режимами ОНОЗ и с подавлением домена. Отличие от режима ОНОЗ состоит в том, что время формирования домена составляет большую часть периода, а от режима подавления—в том, что домен рассасывается, не успев полностью сформироваться.

При понижении рабочей частоты наблюдается плавный переход из режима ОНОЗ в гибридный режим, а далее из гибридного режима—в режим с подавлением домена. Таким образом, возможно изменение частоты в очень широком диапазоне, перекрывающем диапазоны отдельных режимов работы.

161

§ 11.4. Особенности устройства и применения диодов Ганна

Диоды Ганна изготавливают на основе монокристаллов или эпитаксиальных пленок арсенида галлия. В зависимости от выбираемого режима работы и параметров длина образцов составляет от 5 мкм до 1 мм, а площадь сечения 2,5.10-5—10-2 см2. Необходим хороший омический контакт, обладающий линейной вольт-амперной характеристикой и малым сопротивлением по сравнению с сопротивлением объема образца.

Рост температуры образца влияет на концентрацию и подвижность электронов. Увеличение концентрации может привести к уменьшению ширины вольт-амперной характеристики, особенно длинных образцов. Для изготовления промышленных диодов обычно используют эпитаксиальный материал с концентрацией электронов, не зависящей от температуры. Однако изменение температуры влияет на подвижность электронов и,

 

 

 

 

 

 

Рис. 11.15

 

Рис. 11.16

следовательно, на дрейфовую скорость. Уменьшение подвижности с ростом температуры приводит к изменению зависимости скорости от поля v(Е) и уменьшению выходной мощности и КПД. Экспериментально установлено, что диоды Ганна достаточно эффективно работают при температурах до 200—250°С. Перегрев диодов ограничивает максимальную мощность генераторов в непрерывном режиме и максимальную длительность импульсов в импульсном режиме. Другой причиной, которая также может ограничивать выходную мощность в пролетных режимах работы, является ударная ионизация.

Для работы в непрерывном режиме на более низких частотах используют планарную конструкцию диода Ганна (рис. 11.15), в которой теплоотвод от образца к металлу происходит через полуизолирующую подложку i. Наибольшая мощность в непрерывном режиме 0,6 Вт в трехсантиметровом диапазоне получена при использовании подложки из алмаза.

Частотный диапазон, перекрываемый генераторами Ганна, очень широк и составляет 100 МГц—150 ГГц. На частотах от 1 до 150 ГГц диоды Ганна используют, в основном, для создания СВЧ-генераторов.

Диоды Ганна включают в линии передачи и резонаторы, перестраиваемые по частоте. Коаксиалыю-волноводная секция с диодом Ганна, включаемая в волноводпый тракт, показана на рис. 11.16. Короткозамыкающие поршни необходимы для перестройки генератора по частоте и согласования диода с нагрузкой.

Для сравнения различных полупроводниковых приборов используется произведение мощности на квадрат частоты (Рf2) [см., например, формулу (10.61) для ЛПД].

Увеличение рабочей частоты f требует уменьшения длины образца L, а, следовательно, и напряжения питания. Но мощность колебаний пропорциональна квадрату напряжения питания. Для диодов Ганна, работающих в доменных режимах, Рf2 =2—5·103 Вт·ГГц2, а теоретический предел — Pf2104 Вт·ГГц2. В режиме ОНОЗ Pf2105 Вт·ГГц2, что отражает преимущества этого режима работы для получения больших мощностей.

Некоторые сведения о параметрах генераторов на диодах Ганна приведены в табл. 9.

162

Коэффициент полезного действия генераторов зависит от режима работы и составляет от единиц до 20%. В отдельных генераторах η30%. Мощность в непрерывном режиме достигает 0,62 Вт на частоте 12,8 ГГц при КПД 3—4%. В импульсном режиме на частоте 7,0 ГГц получена мощность 2,1 кВт при η=4%, на частоте 100 ГГц—около 100 мВт при

η=5%.

Генераторы на диодах Ганна перестраиваются по частоте изменением либо параметров резонаторов, либо напряжения питания. Механическую перестройку можно производить в широких пределах при условии плавного перехода из одного режима работы в другой. Кроме того, возможна перестройка с помощью варакторов, ферритов, железоиттриевого граната и магнитного поля. Электронная перестройка частоты изменением напряжения питания в резонансных режимах работы мала и составляет 5—20 МГц/В. Эта перестройка связана с изменением емкости домена.

Т а б л и ц а. 9

Параметры генераторов на диодах Ганна

Диоды Ганна принципиально не являются малошумящими приборами, так как эффективная температура электронов в области домена значительно превышает температуру кристаллической решетки («горячие» электроны). Шум в диодах обусловлен также случайным изменением момента зарождения домена, неоднородностью свойств диода в поперечном сечении и флуктуацией скорости домена. Диоды, работающие в режиме ОНОЗ, имеют уровень шума меньше, чем в доменных режимах из-за отсутствия процесса формирования доменов сильного поля и меньшей эффективной температуры электронов. Амплитудный шум генераторов примерно на 30 дБ меньше частотного, а последний близок к уровню шума клистронов. Для лучших генераторов частотный шум составляет: —110 дБ при смещении от основной частоты на 100 кГц; —130 дБ при смещении на 1 МГц; —160 дБ при смещении на 10 МГц.

В настоящее время генераторы на диодах Ганна находят применение в качестве СВЧгетеродинов и генераторов в маломощных передатчиках в сантиметровом и миллиметровом диапазонах.

Соседние файлы в папке СВЧ